Musib Siddique

Learn More
BACKGROUND AND PURPOSE Alzheimer disease (AD) is accompanied by macroscopic atrophy on volumetric MR imaging. A few studies have also demonstrated reduction in magnetization transfer ratio (MTR), suggesting microstructural changes in remaining brain tissue. This study assessed the value of measuring MTR in addition to volumetric MR in differentiating(More)
18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is now routinely used in oncological imaging for diagnosis and staging and increasingly to determine early response to treatment, often employing semiquantitative measures of lesion activity such as the standardized uptake value (SUV). However, the ability to predict(More)
PURPOSE To prospectively measure magnetization transfer (MT) parameters, along with established atrophy parameters, in patients with Alzheimer disease (AD) and in age- and sex-matched control subjects. MATERIALS AND METHODS Participants provided informed consent, and additional assent was obtained from next of kin of all patients with AD. The study was(More)
Teriparatide increases skeletal mass, bone turnover markers, and bone strength, but local effects on bone tissue may vary between skeletal sites. We used positron emission tomography (PET) to study (18)F-fluoride plasma clearance (K(i)) at the spine and standardized uptake values (SUVs) at the spine, pelvis, total hip, and femoral shaft in 18 postmenopausal(More)
Measuring tumour heterogeneity by textural analysis in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) provides predictive and prognostic information but technical aspects of image processing can influence parameter measurements. We therefore tested effects of image smoothing, segmentation and quantisation on the precision of heterogeneity(More)
Quantitative radionuclide imaging using (18)F-fluoride positron emission tomography (18F-PET) or (99m)Tc-methylene diphosphonate ((99m)Tc-MDP) bone scans provides a novel tool for studying regional and whole skeleton bone turnover that complements the information provided by biochemical markers. Radionuclide bone scans can be quantified by measuring either(More)
OBJECTIVE To compare an automated intensity-based measure of medial temporal atrophy in Alzheimer disease (AD) with existing volumetric and visually based methods. DESIGN Longitudinal study comparing a medial temporal atrophy measure with 2 criterion standards: (1) total hippocampal (HC) volume adjusted for total intracranial volume and (2) standard(More)
We evaluate a new quantitative method of acquiring and analysing 18F positron emission tomography (PET) studies that enables regional bone plasma clearance (K i ) to be estimated from static scans acquired at multiple sites in the skeleton following a single injection of tracer. Dynamic lumbar spine 18F PET data from two clinical trials were used to(More)
Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant(More)
Studies of bone remodeling using bone biopsy and biochemical markers of bone turnover measured in serum and urine are important for investigating how new treatments for osteoporosis affect bone metabolism. Positron emission tomography with (18)F sodium fluoride ((18)F NaF PET) for studying bone metabolism complements these conventional methods. Unlike(More)