Musa R. Kamal

Learn More
Nanocrystalline cellulose (NCC) reinforced chitosan-based biodegradable films were prepared by solution casting. The NCC content in the films was varied from 1 to 10% (dry wt. basis). It was found that the tensile strength (TS) of the nanocomposite films with 5% (w/w) NCC content was optimum with an improvement of 26% compared to the control chitosan films.(More)
Nanocrystalline cellulose (NCC) reinforced alginate-based nanocomposite film was prepared by solution casting. The NCC content in the matrix was varied from 1 to 8% ((w/w) % dry matrix). It was found that the nanocomposite reinforced with 5 wt% NCC content exhibits the highest tensile strength which was increased by 37% compared to the control.(More)
In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of(More)
Methylcellulose (MC)-based films were prepared by casting from its 1% aqueous solution containing 0.5% vegetable oil, 0.25% glycerol, and 0.025% Tween 80. Puncture strength (PS), puncture deformation (PD), viscoelasticity coefficient, and water vapor permeability (WVP) were found to be 147 N/mm, 3.46 mm, 41%, and 6.34, respectively.(More)
Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the(More)
  • 1