Murray R. Badger

Learn More
Cyanobacteria have evolved an extremely effective single-cell CO(2) concentrating mechanism (CCM). Recent molecular, biochemical and physiological studies have significantly extended current knowledge about the genes and protein components of this system and how they operate to elevate CO(2) around Rubisco during photosynthesis. The CCM components include(More)
Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized(More)
Rubisco is the predominant enzymatic mechanism in the biosphere by which autotrophic bacteria, algae, and terrestrial plants fix CO(2) into organic biomass via the Calvin-Benson-Basham reductive pentose phosphate pathway. Rubisco is not a perfect catalyst, suffering from low turnover rates, a low affinity for its CO(2) substrate, and a competitive(More)
Cyanobacteria probably exhibit the widest range of diversity in growth habitats of all photosynthetic organisms. They are found in cold and hot, alkaline and acidic, marine, freshwater, saline, terrestrial, and symbiotic environments. In addition to this, they originated on earth at least 2.5 billion years ago and have evolved through periods of dramatic O2(More)
Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in(More)
The external inorganic carbon pool (CO(2) + HCO(3) (-)) was measured in both high and low CO(2)-grown cells of Chlamydomonas reinhardtii, using a silicone oil layer centrifugal filtering technique. The average internal pH values were measured for each cell type using [(14)C]dimethyloxazolidinedione, and the internal inorganic carbon pools were recalculated(More)
Nitric oxide (NO) is an important signaling molecule in animals and plants. In mammals, NO is produced from Arg by the enzyme NO synthase. In plants, NO synthesis from Arg using an NO synthase-type enzyme and from nitrite using nitrate reductase has been demonstrated previously. The data presented in this report strongly support the hypothesis that plant(More)
In cyanobacteria, the key enzyme for photosynthetic CO(2) fixation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is bound within proteinaceous polyhedral microcompartments called carboxysomes. Cyanobacteria with Form IB Rubisco produce beta-carboxysomes whose putative shell proteins are encoded by the ccm-type genes. To date, very little is(More)
Linear electron transport in chloroplasts produces a number of reduced components associated with photosystem I (PS I) that may subsequently participate in reactions that reduce O2. The two primary reactions that have been extensively studied are: first, the direct reduction of O2 to superoxide by reduced donors associated with PS I (the Mehler reaction),(More)
Exposure of cells of cyanobacteria (blue-green algae) grown under high-CO(2) conditions to inorganic C-limitation induces transcription of particular genes and expression of high-affinity CO(2) and HCO(3)(-) transport systems. Among the low-CO(2)-inducible transcription units of Synechococcus sp. strain PCC 7942 is the cmpABCD operon, encoding an(More)