Murray J. Holland

Learn More
We observe dramatic changes in the atomic momentum distribution of a Fermi gas in the crossover region between the BCS theory superconductivity and Bose-Einstein condensation (BEC) of molecules. We study the shape of the momentum distribution and the kinetic energy as a function of interaction strength. The momentum distributions are compared to a(More)
The spectral purity of an oscillator is central to many applications, such as detecting gravity waves, defining the second, ground-state cooling and quantum manipulation of nanomechanical objects, and quantum computation. Recent proposals suggest that laser oscillators which use very narrow optical transitions in atoms can be orders of magnitude more(More)
We consider the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas. We apply our theory to consider a specific resonance in potassium ((40)K), and find that for achievable experimental conditions, the transition to a superfluid phase is possible at the high critical temperature of about 0.5T(F).(More)
We propose a new light source based on having alkaline-earth atoms in an optical lattice collectively emit photons on an ultranarrow clock transition into the mode of a high Q resonator. The resultant optical radiation has an extremely narrow linewidth in the mHz range, even smaller than that of the clock transition itself due to collective effects. A power(More)
We explore the potential of direct spectroscopy of ultranarrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy(More)
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the(More)
An atom laser is a device which generates an atomic beam which is both intense and coherent [1–10]. It is typically defined by direct analogy with the optical laser. As in the case of an optical laser, if a threshold condition is satisfied the atom laser will operate far from equilibrium in a dynamical steady state [11]. In this regime, the macroscopically(More)
We predict a direct and observable signature of the superfluid phase in a quantum Fermi gas, in a temperature regime already accessible in current experiments. We apply the theory of resonance superfluidity to a gas confined in a harmonic potential and demonstrate that a significant increase in density will be observed in the vicinity of the trap center.
We investigate theoretically the suppression of two-body losses when the on-site loss rate is larger than all other energy scales in a lattice. This work quantitatively explains the recently observed suppression of chemical reactions between two rotational states of fermionic KRb molecules confined in one-dimensional tubes with a weak lattice along the(More)
We show that pair correlations may play an important role in the dynamical properties of a Bose-Einstein condensed gas composed of an atomic field resonantly coupled with a condensed field of molecular dimers. Specifically, pair correlations in this system can dramatically modify the coherent and incoherent transfers between the atomic and molecular fields.