Muriel Lobier

Learn More
The visual front-end of reading is most often associated with orthographic processing. The left ventral occipito-temporal cortex seems to be preferentially tuned for letter string and word processing. In contrast, little is known of the mechanisms responsible for pre-orthographic processing: the processing of character strings regardless of character type.(More)
The visual attention (VA) span deficit hypothesis of dyslexia posits that letter string deficits are a consequence of impaired visual processing. Alternatively, some have interpreted this deficit as resulting from a visual-to-phonology code mapping impairment. This study aims to disambiguate between the two interpretations by investigating performance in a(More)
Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report(More)
A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal(More)
We introduce here phase transfer entropy (Phase TE) as a measure of directed connectivity among neuronal oscillations. Phase TE quantifies the transfer entropy between phase time-series extracted from neuronal signals by filtering for instance. To validate the measure, we used coupled Neuronal Mass Models to both evaluate the characteristics of Phase TE and(More)
The visual attention (VA) span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a(More)
Phase synchronization of neuronal oscillations has been suggested to underlie the coordination and integration of anatomically distributed processing [1,2]. To quantify " causal " or directional inter-areal phase-phase interactions , a phase-based measure of effective connectivity is needed. Methods for detecting effective connectivity can be divided into(More)
  • 1