Muriel J. Harris

Learn More
The number of mouse mutants and strains with neural tube defects (NTDs) now exceeds 240, including 205 representing specific genes, 30 for unidentified genes, and 9 multifactorial strains. These mutants identify genes needed for embryonic neural tube closure. Reports of 50 new NTD mutants since our 2007 review (Harris and Juriloff, 2007) were considered in(More)
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina(More)
BACKGROUND Nonsyndromic cleft lip (CL) with or without cleft palate (CLP) is a common human birth defect with complex genetic etiology. One of the unidentified genes maps to chromosome 17q21. A mouse strain, A/WySn, has CLP with complex genetic etiology that models the human defect, and 1 of its causative genes, clf1, maps to a region homologous to human(More)
Almost 30 years after the initial study by Richard W. Smithells and coworkers, it is still unknown how maternal periconceptional folic acid supplementation prevents human neural tube defects (NTDs). In this article, questions about human NTD prevention are considered in relation to three groups of mouse models: NTD mutants that respond to folate, NTD(More)
ETnII elements are mobile members of the repetitive early transposon family of mouse long terminal repeat (LTR) retroelements and have caused a number of mutations by inserting into genes. ETnII sequences lack retroviral genes, but the recent discovery of related MusD retroviral elements with regions similar to gag, pro, and pol suggests that MusD provides(More)
Nonsyndromic cleft lip and palate (CLP) is among the most common human birth defects. Transmission patterns suggest that the causes are "multifactorial" combinations of genetic and nongenetic factors, mostly distinct from those causing cleft secondary palate (CP). The major etiological factors are largely unknown, and the embryological mechanisms are not(More)
The open eye defect in the mouse can result from the action of mutant genes or of teratogens. Among the genetic forms, the lidgap series poses a particular challenge. The lidgap defect appears to be a complex genetic trait and may serve as a model for the genetic analysis of other genetically complex morphological defects in mammals. Extensive breeding(More)
The scanning electron microscopic study of day 9 embryos reported here documents differences among normal mouse strains in morphology of cranial neural tube closure. The site of initiation of contact and fusion of the cranial neural folds, previously defined as Closure 2 (Macdonald et al., '89), is located in the region of the junction between the forebrain(More)
We review the data from studies of mouse mutants that lend insight to the mechanisms that lead to neural tube defects (NTDs). Most of the 50 single-gene mutations that cause neural tube defects (NTDs) in mice also cause severe embryonic-lethal syndromes, in which exencephaly is a nonspecific feature. In a few mutants (e.g., Trp53, Macs, Mlp or Sp), other(More)
Four separate initiation sites for neural tube (NT) fusion have been demonstrated recently in mice and other experimental animals. We evaluated the question of whether the multisite model vs. the traditional single-site model of NT closure provided the best explanation for neural tube defects (NTDs) in humans. Evidence for segmental vs. continuous NT(More)