Muriel B. Sättler

Learn More
AbstractIn multiple sclerosis (MS), long-term disability is primarily caused by axonal and neuronal damage. We demonstrated in a previous study that neuronal apoptosis occurs early during experimental autoimmune encephalomyelitis, a common animal model of MS. In the present study, we show that, in rats suffering from myelin oligodendrocyte glycoprotein(More)
Neurodegenerative processes determine the clinical disease course of multiple sclerosis, an inflammatory autoimmune CNS disease that frequently manifests with acute optic neuritis. None of the established multiple sclerosis therapies has been shown to clearly reduce neurodegeneration. In a rat model of experimental autoimmune encephalomyelitis, we recently(More)
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS which leads to demyelination, axonal destruction and neuronal loss in the early stages. Available therapies mainly target the inflammatory component of the disease but fail to prevent neurodegeneration. To investigate the effect of ciliary neurotrophic factor (CNTF) on the survival of(More)
Axonal degeneration is now recognized as an important pathological feature of multiple sclerosis (MS). Acute axonal damage happens early in the disease course, and therefore early changes might occur in markers in body fluids, such as cerebrospinal fluid (CSF) and blood. In our study we investigated the relevance of serum and CSF markers for axonal damage(More)
OBJECTIVE Based on findings in animal models of autoimmune optic nerve inflammation, we have assessed the safety and efficacy of erythropoietin in patients presenting with a first episode of optic neuritis. METHODS Patients with optic neuritis who attended the University Hospitals of Homburg/Saar, Göttingen, or Hamburg (Germany) were included in this(More)
Interferon-beta-1a (IFN-beta-1a) is an approved treatment for multiple sclerosis (MS). It improves the disease course by reducing the relapse rate as well as the persistent neurological deficits. Recent MRI and post-mortem studies revealed that neuronal and axonal damage are most relevant for chronic disability in MS patients. We have characterized(More)
Axonal destruction and neuronal loss occur early during multiple sclerosis (MS), an autoimmune inflammatory central nervous system disease that frequently manifests with acute optic neuritis. Glatiramer acetate (GA) and interferon-beta-1b (IFN-beta-1b) are two immunomodulatory agents that have been shown to decrease the frequency of MS relapses. However,(More)
PURPOSE The aim of the present study was to evaluate the ability and accuracy of spectral domain optical coherence tomography (OCT) for in vivo monitoring of retinal ganglion cell degeneration in a rat model of myelin oligodendrocyte glycoprotein-induced optic neuritis. METHODS First, OCT imaging was established for imaging of all retinal layers in Brown(More)
We investigated the effect of atacicept, a recombinant fusion protein blocking BLyS and APRIL and acting on B cells, on degeneration of retinal ganglion cells (RGCs) during experimental autoimmune encephalomyelitis (EAE). We used myelin oligodendrocyte glycoprotein in Brown Norway rats to induce a variant of EAE which involves B cells and leads to severe(More)
In patients with multiple sclerosis (MS), non-remitting deficits are mainly caused by axonal and neuronal damage. We demonstrated previously that myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in rats provokes severe axonal and neuronal injury even before clinical manifestation of the disease. In our present(More)