Murat Dundar

Learn More
We propose a novel Bayesian multiple instance learning (MIL) algorithm. This algorithm automatically identifies the relevant feature subset, and utilizes inductive transfer when learning multiple (conceptually related) classifiers. Experimental results indicate that the proposed MIL method is more accurate than previous MIL algorithms and selects a much(More)
Many computer aided diagnosis (CAD) problems can be best modelled as a multiple-instance learning (MIL) problem with unbalanced data: i.e. , the training data typically consists of a few positive bags, and a very large number of negative instances. Existing MIL algorithms are much too computationally expensive for these datasets. We describe CH, a framework(More)
In the diagnosis of preinvasive breast cancer, some of the intraductal proliferations pose a special challenge. The continuum of intraductal breast lesions includes the usual ductal hyperplasia (UDH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS). The current standard of care is to perform percutaneous needle biopsies for diagnosis(More)
We propose a family of multi-task learning algorithms for collaborative computer aided diagnosis which aims to diagnose multiple clinically-related abnormal structures from medical images. Our formulations eliminate features irrelevant to all tasks, and identify discriminative features for each of the tasks. A probabilistic model is derived to justify the(More)
Automatic analysis of histopathological images has been widely utilized leveraging computational image-processing methods and modern machine learning techniques. Both computer-aided diagnosis (CAD) and content-based image-retrieval (CBIR) systems have been successfully developed for diagnosis, disease detection, and decision support in this area. Recently,(More)
The existing methods for offline training of cascade classifiers take a greedy search to optimize individual classifiers in the cascade, leading inefficient overall performance. We propose a new design of the cascaded classifier where all classifiers are optimized for the final objective function. The key contribution of this paper is the AND-OR framework(More)
In this study we propose a supervised classifier based on implementation of the Bayes rule with kernels. The proposed technique first proposes an implicit nonlinear transformation of the data into a feature space seeking to fit normal distributions having a common covariance matrix onto the mapped data. One requirement of this approach is the evaluation of(More)
We propose a fast iterative classification algorithm for Kernel Fisher Discriminant (KFD) using heterogeneous kernel models. In contrast with the standard KFD that requires the user to predefine a kernel function, we incorporate the task of choosing an appropriate kernel into the optimization problem to be solved. The choice of kernel is defined as a linear(More)
It is well-known that there is a strong relation between class definition precision and classification accuracy in pattern classification applications. In hyperspectral data analysis, usually classes of interest contain one or more components and may not be well represented by a single Gaussian density function. In this paper, a model based mixture(More)
In this paper we propose a cost-effective iterative semi-supervised classifier based on a kernel concept. The proposed technique incorporates unlabeled data into the design of a binary classifier by introducing and optimizing a cost function in a feature space which maximizes the Rayleigh coefficient while minimizing the total cost associated with(More)