Muralidharan Jayaraman

Learn More
The RGS7 (R7) family of G protein regulators, Gbeta5, and R7BP form heterotrimeric complexes that potently regulate the kinetics of G protein-coupled receptor signaling. Reversible palmitoylation of R7BP regulates plasma membrane/nuclear shuttling of R7*Gbeta5*R7BP heterotrimers. Here we have investigated mechanisms whereby R7BP controls the function of the(More)
RGS (regulator of G protein signaling) proteins have emerged as crucial regulators, effectors and integrators in G-protein-coupled receptor (GPCR) signaling networks. Many RGS proteins accelerate GTP hydrolysis by Galpha subunits, thereby regulating G protein activity, whereas certain RGS proteins also transduce Galpha signals to downstream targets.(More)
Members of the regulator of G protein signaling 7 (RGS7) (R7) family and Gbeta5 form obligate heterodimers that are expressed predominantly in the nervous system. R7-Gbeta5 heterodimers are GTPase-activating proteins (GAPs) specific for Gi/o-class Galpha subunits, which mediate phototransduction in retina and the action of many modulatory G protein-coupled(More)
Recent studies have shown that the gip2 and gep oncogenes defined by the α-subunits of Gi2 and G12 family of G proteins, namely Gαi2 and Gα12/13, stimulate oncogenic signaling pathways in cancer cells including those derived from ovarian cancer. However, the critical α-subunit involved in ovarian cancer growth and progression in vivo remains to be(More)
  • 1