Murali Mohan Yallapu

Learn More
Curcumin, a natural polyphenolic compound, has shown promising chemopreventive and chemotherapeutic activities in cancer. Although phase I clinical trials have shown curcumin as a safe drug even at high doses, poor bioavailability and suboptimal pharmacokinetics largely moderated its anti-cancer activity in pre-clinical and clinical models. To improve its(More)
We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and(More)
Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes(More)
Curcumin, a hydrophobic polyphenolic compound derived from the rhizome of the herb Curcuma longa, possesses a wide range of biological applications including cancer therapy. However, its prominent application in cancer treatment is limited due to sub-optimal pharmacokinetics and poor bioavailability at the tumor site. In order to improve its hydrophilic and(More)
Polyethylene glycol (PEG) functionalized magnetic nanoparticles (MNPs) were tested as a drug carrier system, as a magnetic resonance imaging (MRI) agent, and for their ability to conjugate to an antibody. An iron oxide core coated with oleic acid (OA) and then with OA-PEG forms a water-dispersible MNP formulation. Hydrophobic doxorubicin partitions into the(More)
BACKGROUND Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is(More)
Interaction of serum proteins and nanoparticles leads to a nanoparticle-protein complex formation that defines the rational strategy for a clinically relevant formulation for drug delivery, hyperthermia, and magnetic resonance imaging (MRI) applications in cancer nanomedicine. Given this perspective, we have examined the pattern of human serum protein(More)
In this study, hydrogel-silver nanocomposites have been synthesized by a unique methodology, which involves formation of silver nanoparticles within swollen poly (acrylamide-co-acrylic acid) hydrogels. The formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and surface plasmon resonance (SPR) which was obtained at 406(More)
BACKGROUND Recent studies report curcumin nanoformulation(s) based on polylactic-co-glycolic acid (PLGA), β-cyclodextrin, cellulose, nanogel, and dendrimers to have anticancer potential. However, no comparative data are currently available for the interaction of curcumin nanoformulations with blood proteins and erythrocytes. The objective of this study was(More)
Here, we provide a comprehensive insight into current advances in the use of nanogel-mediated chemotherapy for cancer treatment. Nanogels are composed of cross-linked three-dimensional polymer chain networks that are formed via covalent linkages or self-assembly processes. The porosity between the cross-linked networks of nanogels not only provides an ideal(More)