Murali Krishna Ghatkesar

Learn More
Membrane proteins are central to many biological processes, and the interactions between transmembrane protein receptors and their ligands are of fundamental importance in medical research. However, measuring and characterizing these interactions is challenging. Here we report that sensors based on arrays of resonating microcantilevers can measure such(More)
Micromechanical cantilever arrays are used to measure time-resolved adsorption of tiny masses based on protein-ligand interactions. Here, streptavidin-biotin interactions are investigated in a physiological environment. A measurement method is introduced using higher flexural modes of a silicon cantilever in order to enhance the sensitivity of mass(More)
Advances in micro and nano fabrication technologies have enabled fabrication of smaller and more sensitive devices for applications not only in solid-state physics but also in medicine and biology. The demand for devices that can precisely transport material, specifically fluids are continuously increasing. Therefore, integration of various technologies(More)
Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we(More)
To manipulate liquid matter at the nanometer scale, we have developed a robotic assembly equipped with a hollow atomic force microscope (AFM) cantilever that can handle femtolitre volumes of liquid. The assembly consists of four independent robots, each sugar cube sized with four degrees of freedom. All robots are placed on a single platform around the(More)
The choice on which type of cantilever to use for Atomic Force Microscopy (AFM) depends on the type of the experiment being done. Typically, the cantilever has to be exchanged when a different stiffness is required and the entire alignment has to be repeated. In the present work, a method to adjust the stiffness in situ of a commercial AFM cantilever is(More)
  • 1