Learn More
Time-series analysis of whole-genome expression data during Drosophila melanogaster development indicates that up to 86% of its genes change their relative transcript level during embryogenesis. By applying conservative filtering criteria and requiring 'sharp' transcript changes, we identified 1534 maternal genes, 792 transient zygotic genes, and 1053 genes(More)
We have previously suggested that a GroEL homolog produced by the whitefly Bemisia tabaci endosymbiotic bacteria interacts in the insect hemolymph with particles of Tomato yellow leaf curl virus from Israel (TYLCV-Is), ensuring the safe circulative transmission of the virus. We have now addressed the question of whether the nontransmissibility of Abutilon(More)
The whitefly Bemisia tabaci is the only vector of the tomato yellow leaf curl geminivirus (TYLCV). The insect transmits the virus in a persistent-circulative manner. TYLCV DNA was detected by polymerase chain reaction and by Southern blot hybridization in progeny (eggs, first and second instars, adults) of single viruliferous whiteflies that developed on(More)
BACKGROUND Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete(More)
The nuclear DNA content of the whitefly Bemisia tabaci (Gennnadius) was estimated using flow cytometry. Male and female nuclei were stained with propidium iodide and their DNA content was estimated using chicken red blood cells and Arabidopsis thaliana L. (Brassicaceae) as external standards. The estimated nuclear DNA content of male and female B. tabaci(More)
Whiteflies (Hemiptera: Aleyrodidae) are sap-sucking insect pests, and some cause serious damage in agricultural crops by direct feeding and by transmitting plant viruses. Whiteflies maintain close associations with bacterial endosymbionts that can significantly influence their biology. All whitefly species harbor a primary endosymbiont, and a diverse array(More)
BACKGROUND Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of(More)
BACKGROUND The past three decades have witnessed a dramatic increase in interest in the whitefly Bemisia tabaci, owing to its nature as a taxonomically cryptic species, the damage it causes to a large number of herbaceous plants because of its specialized feeding in the phloem, and to its ability to serve as a vector of plant viruses. Among the most(More)
The hemipteran whitefly Bemisia tabaci (Gennadius) species complex and the plant viruses they transmit pose major constraints to vegetable and fiber production, worldwide. The whitefly tissue- and developmental-specific gene expression has not been exhaustively studied despite its economic importance. In 2002, a functional genomic project was initiated,(More)
Evidence for the involvement of a Bemisia tabaci GroEL homologue in the transmission of tomato yellow leaf curl geminivirus (TYLCV) is presented. A approximately 63-kDa protein was identified in B. tabaci whole-body extracts using an antiserum raised against aphid Buchnera GroEL. The GroEL homologue was immunolocalized to a coccoid-shaped whitefly(More)