Learn More
Corticotropin-releasing factor (CRF) receptor agonists administered peripherally increase colonic propulsive motility and fecal output in experimental animals. In addition, endogenous CRF-related peptides are found in the lower gastrointestinal (GI) tissues, suggesting a local expression of CRF receptors. In the present study, we report the expression of(More)
Peripheral corticotropin-releasing factor (CRF) receptor ligands inhibit gastric acid secretion and emptying while stimulating gastric mucosal blood flow in rats. Endogenous CRF ligands are expressed in the upper gastrointestinal (GI) tissues pointing to local expression of CRF receptors. We mapped the distribution of CRF receptor type 1 (CRF1) and 2 (CRF2)(More)
Obestatin is a new peptide for which anorexigenic effects were recently reported in mice. We investigate whether peripheral injection of obestatin or co-injection with cholecystokinin (CCK) can modulate food intake, gastric motor function (intragastric pressure and emptying) and gastric vagal afferent activity in rodents. Obestatin (30, 100 and 300(More)
Intraperitoneal (i.p.) corticotropin releasing factor (CRF) induced a CRF(1) receptor-dependent stimulation of myenteric neurons and motility in the rat proximal colon. We characterize the colonic enteric nervous system response to CRF in conscious rats. Laser capture microdissection combined with reverse transcriptase polymerase chain reaction (RT-PCR) and(More)
1. The characterization of corticotropin releasing factor (CRF) and, more recently, the discovery of additional CRF-related ligands, urocortin 1, urocortin 2 and urocortin 3, the cloning of two distinct CRF receptor subtypes, 1 (CRF(1)) and 2 (CRF(2)), and the development of selective CRF receptor antagonists provided new insight to unravel the mechanisms(More)
Alterations of gastrointestinal (GI) motor function are part of the visceral responses to stress. Inhibition of gastric emptying and stimulation of colonic motor function are the commonly encountered patterns induced by various stressors. Activation of brain corticotropin-releasing factor (CRF) receptors mediates stress-related inhibition of upper GI and(More)
Corticotropin-releasing factor (CRF) overexpressing (OE) mice are a genetic model that exhibits features of chronic stress. We investigated whether the adaptive feeding response to a hypocaloric challenge induced by food deprivation is impaired under conditions of chronic CRF overproduction. Food intake response to a 16-h overnight fast and ip injection of(More)
CRF injected intraperitoneally (i.p.) stimulates colonic motor function and induces Fos expression in colonic myenteric neurons. We investigated central and spinal Fos expression and changes in colonic motility in response to i.p. injection of CRF and urocortin. Ovine CRF(9-33) that is devoid of intrinsic activity at the CRF receptors, was used as control(More)
Human urocortin (hUcn) II is a new member of the corticotropin-releasing factor (CRF) family that selectively binds to the CRF(2) receptor. We investigated the CRF receptors involved in mediating the effects of hUcn II and human/rat CRF (h/rCRF) on gut transit. Gastric emptying, 4 h after a solid meal, and distal colonic transit (bead expulsion time) were(More)
The characterization of corticotropin-releasing factor (CRF) and CRF receptors, and the development of specific CRF receptor antagonists selective for the receptor subtypes have paved the way to the understanding of the biochemical coding of stress-related alterations of gut motor function. Reports have consistently established that central administration(More)