Learn More
Blackleg fungi [Leptosphaeria maculans (asexual stage Phoma lingam) and Leptosphaeria biglobosa] are devastating plant pathogens with well-established stratagems to invade crucifers, including the production of enzymes that detoxify plant defenses such as phytoalexins. The significant roles of brassinin, both as a potent crucifer phytoalexin and a(More)
The synthesis and anti-cancer activity evaluation of fused imidazoquinoline compounds is reported in this paper. Yb(OTf)3 has been utilized as a catalyst for the synthesis of 1,4-diaryl substituted imidazo[4,5-c]quinolines via a modified Pictet-Spengler approach. The desired imidazole ring was synthesized from imines using TosMIC (toluenesulfonylmethyl(More)
Brassinin is a plant defense metabolite with antimicrobial activity produced de novo by a variety of Brassica species in response to stress, that is, a phytoalexin. The inhibition of brassinin oxidase (BO), a brassinin-detoxifying enzyme produced by the phytopathogenic fungus Leptosphaeria maculans, is a target in our continuing search for novel crop(More)
Brassinin is a phytoalexin produced by plants from the family Brassicaceae that displays antifungal activity against a number of pathogens of Brassica species, including Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.] and L. biglobosa. The interaction of a group of isolates of L. maculans virulent on brown(More)
Efficient syntheses of the phytoalexins brassilexin, sinalexin, and analogues are demonstrated through the application of the Vilsmeier formylation to indoline-2-thiones followed by a new aqueous ammonia workup procedure. Similarly, a very concise two-pot synthesis of the phytoalexins wasalexins using sequential formylation-amination of indolin-2-ones is(More)
The impact of the phytoalexins camalexin and spirobrassinin on brassinin detoxification by Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.], a pathogenic fungus prevalent on crucifers, was investigated. Brassinin is a plant metabolite of great significance due to its dual role both as an effective phytoalexin(More)
Brassinin (1), a crucial plant defense produced by crucifers, is detoxified by the phytopathogenic fungus Leptosphaeria maculans (Phoma lingam) to indole-3-carboxaldehyde using a putative brassinin oxidase. Potential inhibitors of brassinin detoxification were designed by replacement of its dithiocarbamate group (toxophore) with carbamate, dithiocarbonate,(More)
We have analyzed 23 crucifer phytoalexins (e.g. brassinin, dioxibrassinin, cyclobrassinin, brassicanals A and C) by HPLC with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) using both negative and positive ion modes. Positive ion mode ESI-MS appeared more sensitive than negative ion mode ESI-MS in detecting this group(More)
An efficient methodology for the synthesis of indole-fused dihydrothiopyrans has been developed from indoline-2-thiones. The protocol involves the synthesis of conjugated ene-yne-substituted indole-sulfides, a gold(III)-catalyzed rearrangement of the ene-yne side chain followed by intramolecular hydroarylation via C3-H functionalization of the indole core.(More)
A one-step Bronsted acid-catalyzed synthetic methodology leading to 3-(alkoxymethylene)indolin-2-ones was developed starting from easily accessible 2-hydroxyindole-3-carboxaldehydes. The procedure simply involves a treatment of differently substituted 2-hydroxyindole-3-carboxaldehydes with various alcohols (primary/secondary/tertiary/allyl/propargyl/benzyl)(More)