Mukta Kulkarni

  • Citations Per Year
Learn More
Biomedical implants made of titanium-based materials are expected to have certain essential features including high bone-to-implant contact and optimum osteointegration, which are often influenced by the surface topography and physicochemical properties of titanium surfaces. The surface structure in the nanoscale regime is presumed to alter/facilitate the(More)
In the present work we investigate the key factors involved in the interaction of small-sized charged proteins with TiO2 nanostructures, i.e. albumin (negatively charged), histone (positively charged). We examine anodic nanotubes with specific morphology (simultaneous control over diameter and length, e.g. diameter - 15, 50 or 100nm, length - 250nm up to(More)
Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO2 nanotubular surfaces, proposed as coating material(More)
OBJECTIVES Peri-implantitis and peri-mucositis pose a severe threat to the success of dental implants. Current research focuses on the development of surfaces that inhibit biofilm formation while not inferring with tissue integration. This study compared the adherence of two oral bacterial species, Streptococcus sanguinis and Streptococcus mutans to(More)
In this work, a theoretical model describing the interaction between a positively or negatively charged nanoparticle and neutral zwitterionic lipid bilayers is presented. It is shown that in the close vicinity of the positively charged nanoparticle, the zwitterionic lipid head groups are less extended in the direction perpendicular to the membrane surface,(More)
The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide(More)
Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on(More)
Titanium (Ti) is one of the most promising biomaterial for biomedical devices due to its high corrosion resistance and specific combination of strength and biocompatibility. Titanium dioxide (TiO2) nanostructures are obtained by electrochemical anodization of Ti foils under self-organization condition; anodization parameters such as anodization time,(More)
Sterilization is the final surface treatment procedure of all implantable devices and is one of the key factors which have to be considered before implementation. Since different sterilization procedures for all implantable devices influence mechanical properties as well as biological response, the influence of different sterilization techniques on titanium(More)