Learn More
Because of the huge size of the common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) genome of 17,300 Mb, sequencing and mapping of the expressed portion is a logical first step for gene discovery. Here we report mapping of 7104 expressed sequence tag (EST) unigenes by Southern hybridization into a chromosome bin map using a set of wheat aneuploids and(More)
By physically mapping 3025 loci including 252 phenotypically characterized genes and 17 quantitative trait loci (QTLs) relative to 334 deletion breakpoints, we localized the gene-containing fraction to 29% of the wheat genome present as 18 major and 30 minor gene-rich regions (GRRs). The GRRs varied both in gene number and density. The five largest GRRs(More)
Bread wheat chromosome 3A has been shown to contain genes/QTLs controlling grain yield and other agronomic traits. The objectives of this study were to generate high-density physical and genetic-linkage maps of wheat homoeologous group 3 chromosomes and reveal the physical locations of genes/QTLs controlling yield and its component traits, as well as(More)
A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726,(More)
Genes detected by wheat expressed sequence tags (ESTs) were mapped into chromosome bins delineated by breakpoints of 159 overlapping deletions. These data were used to assess the organizational and evolutionary aspects of wheat genomes. Relative gene density and recombination rate increased with the relative distance of a bin from the centromere.(More)
The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA(More)
The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to crop species has revolutionized molecular genetics and crop improvement strategies. This study compared 4485 expressed sequence tags (ESTs) that were physically mapped in wheat chromosome bins, to the public rice genome sequence(More)
The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous(More)
A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4(More)
This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous(More)