Muhammad Zahid

Learn More
Hepatitis C virus (HCV) is a major cause of liver disease, but therapeutic options are limited and there are no prevention strategies. Viral entry is the first step of infection and requires the cooperative interaction of several host cell factors. Using a functional RNAi kinase screen, we identified epidermal growth factor receptor and ephrin receptor A2(More)
Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly(More)
Strong evidence supports the idea that specific metabolites of estrogens, mainly catechol estrogen-3,4-quinones, can react with DNA to become endogenous initiators of breast, prostate, and other human cancers. Oxidation of the catechol estrogen metabolites 4-hydroxyestradiol (4-OHE2) and 2-OHE2 leads to the quinones, estradiol-3,4-quinone (E2-3,4-Q) and(More)
Formation of estrogen metabolites that react with DNA is thought to be a mechanism of cancer initiation by estrogens. The estrogens estrone (E(1)) and estradiol (E(2)) can form catechol estrogen (CE) metabolites, catechol estrogen quinones [E(1)(E(2))-3,4-Q], which react with DNA to form predominantly depurinating adducts. This may lead to mutations that(More)
We previously reported that antiestrogen-liganded estrogen receptor beta (ERbeta) transcriptionally activates the major detoxifying enzyme quinone reductase (QR) (NAD(P)H:quinone oxidoreductase). Further studies on the functional role of ERbeta-mediated upregulation of antioxidative enzymes indicated protective effects against estrogen-induced oxidative DNA(More)
UNLABELLED Scavenger receptor class B type I (SR-BI) is a high-density lipoprotein (HDL) receptor highly expressed in the liver and modulating HDL metabolism. Hepatitis C virus (HCV) is able to directly interact with SR-BI and requires this receptor to efficiently enter into hepatocytes to establish productive infection. A complex interplay between(More)
Exposure to estrogens is a risk factor for breast cancer. Specific estrogen metabolites may initiate breast cancer and other cancers. Genotoxicity may be caused by cytochrome P450 (CYP)-mediated oxidation of catechol estrogens to quinones that react with DNA to form depurinating estrogen-DNA adducts. CYP1B1 favors quinone formation by catalyzing estrogen(More)
Using a single nucleotide polymorphism association study in 52 men with prostate cancer receiving docetaxel, we found that individuals carrying two copies of the CYP1B1*3 polymorphic variant had a poor prognosis after docetaxel-based therapies compared with individuals carrying at least one copy of the CYP1B1*1 allele (30.6 versus 12.8 months; P=0.0004).(More)
Platelet adhesion and aggregation at the site of vascular injury is essential for hemostasis, but can also lead to arterial occlusion in thrombotic disorders. Glycoprotein (GP) VI is the major platelet membrane receptor that interacts directly with collagen, the most thrombogenic compound in the blood vessels. GPVI could therefore be a major therapeutic(More)
Extensive evidence exists that the reaction of estrogen metabolites with DNA produces depurinating adducts that, in turn, induce mutations and cellular transformation. While it is clear that these estrogen metabolites result in a neoplastic phenotype in vitro, further evidence supporting the link between estrogen-DNA adduct formation and its role in(More)