Muhammad Wajid Ullah

Learn More
Bacterial cellulose (BC), owing to its pure nature and impressive physicochemical properties, including high mechanical strength, crystallinity, porous fibrous structure, and liquid absorbing capabilities, has emerged as an advanced biomaterial. To match the market demand and economic values, BC has been produced through a number of synthetic routes,(More)
In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted(More)
UNLABELLED Electrically conducting bacterial cellulose (BC) membranes were prepared by ex situ incorporation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PEDOT PSS) into BC pellicles. The BC pellicles were immersed into an aqueous solution of PEDOT PSS for 6, 12, 18, or 24h, and the resultant composites were vacuum dried at ambient(More)
This study was aimed to characterize the structural and physico-mechanical properties of bio-cellulose produced through cell-free system. Fourier transform-infrared spectrum illustrated exact matching of structural peaks with microbial cellulose, used as reference. Field-emission scanning electron microscopy revealed that fibrils of bio-cellulose were(More)
The current study was intended to produce bio-cellulose through a cell-free system developed by disrupting Gluconacetobacter hansenii PJK through bead-beating. Microscopic analysis indicated the complete disruption of cells (2.6 × 10(7) cells/mL) in 20 min that added 95.12 μg/mL protein, 1.63 mM ATP, and 1.11 mM NADH into the medium. A liquid chromatography(More)
This study aims to develop an effective method to control motile microorganisms and enable their manipulation as functional 'live micro/nano robots'. A novel strategy based on Fe3 O4 nanoparticle-doped alginate hydrogel is developed to fashion an artificial extracellular matrix (ECM) for microbial cells (e.g., Saccharomyces cerevisiae and Flavobacterium(More)
The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are(More)
In the past century, the recombinant DNA technology was just an imagination that desirable characteristics can be improved in the living bodies by controlling the expressions of target genes. However, in recent era, this field has demonstrated unique impacts in bringing advancement in human life. By virtue of this technology, crucial proteins required for(More)
Hydrogels prepared from natural polymers have received immense considerations over the past decade due to their safe nature, biocompatibility, hydrophilic properties, and biodegradable nature. More recently, when treated with electroactive materials, these hydrogels were endowed with high electrical conductivity, electrochemical redox properties, and(More)
Bioprinting of three-dimensional constructs mimicking natural-like extracellular matrix has revolutionized biomedical technology. Bioprinting technology circumvents various discrepancies associated with current tissue engineering strategies by providing an automated and advanced platform to fabricate various biomaterials through precise deposition of cells(More)