Muhammad Sarwar Khan

Learn More
Chloroplast genomes defied the laws of Mendelian inheritance at the dawn of plant genetics, and continue to defy the mainstream approach to biotechnology, leading the field in an environmentally friendly direction. Recent success in engineering the chloroplast genome for resistance to herbicides, insects, disease and drought, and for production of(More)
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of(More)
p-Hydroxybenzoic acid (pHBA) is the major monomer in liquid crystal polymers. In this study, the Escherichia coli ubiC gene that codes for chorismate pyruvate-lyase (CPL) was integrated into the tobacco (Nicotiana tabacum) chloroplast genome under the control of the light-regulated psbA 5' untranslated region. CPL catalyzes the direct conversion of(More)
Plant genetic engineering will probably contribute to the required continued increase in agricultural productivity during the coming decades, and moreover, plants can potentially provide inexpensive production platforms for pharmaceuticals and nutraceuticals. With the advent of technologies for altering the genetic information inside chloroplasts, a new(More)
With the advent of genetic manipulation techniques, it has become possible to clone and insert gene into the genome of crop plants to confer resistance to insects and pests. Resistance to insects has been demonstrating in transgenic plants either by triggering defense system of plants or by expressing heterologous cry genes for delta-endotoxins from(More)
The production of interferon alpha from microbial to mammalian expression system, have certain precincts in terms of cost, scalability, safety and authenticity. Modern biotechnology exploits transgenic crops to get large quantities of complex proteins in a cost-effective way. In order to overcome several challenges from biosafety point of view, the(More)
Transgenes in plastids are contained by stringent maternal inheritance in most cultivated plant species and their expression yields high levels of protein with bona fide structure. Nevertheless, transfer of plastid genes to the nucleus has been reported, with implications for transgene containment. The significance of these transfers will depend on the(More)
Two RNA polymerases, plastid-encoded PEP and nuclear-encoded NEP, serve different sets of genes in plastids but share the transcription of housekeeping genes. Thus far, three genes have been identified that encode NEP -RpoTp, RpoTmp and RpoTm. The gene products of RpoTp and RpoTm are targeted to plastids and mitochondria, respectively. However, the RpoTmp(More)
The functional analysis of genes encoded by the chloroplast genome of tobacco by reverse genetics is routine. Nevertheless, for a small number of genes their deletion generates heteroplasmic genotypes, complicating their analysis. There is thus the need for additional strategies to develop deletion mutants for these genes. We have developed a homologous(More)
Plastid transformation offers the unique advantages of high-level transgene expression and increased transgene containment compared with conventional transgenic technologies. The process relies on the homologous recombination machinery of the plastid incorporating foreign DNA into the plastome, which restricts the method to species where this type of(More)