Muhammad Rizwan

Learn More
In present era, heavy metal pollution is rapidly increasing which present many environmental problems. These heavy metals are mainly accumulated in soil and are transferred to food chain through plants grown on these soils. Silicon (Si) is the second most abundant element in the soil. It has been widely reported that Si can stimulate plant growth and(More)
Little information is available on the role of glycinebetaine (GB) in chromium (Cr) tolerance while Cr toxicity is widespread problem in crops grown on Cr-contaminated soils. In this study, we investigated the influence of GB on Cr tolerance in wheat (Triticum aestivum L.) grown in sand and soil mediums. Three concentrations of chromium (0, 0.25, and 0.5(More)
We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11(More)
The concentrations of engineered metal and metal oxide nanoparticles (NPs) have increased in the environment due to increasing demand of NPs based products. This is causing a major concern for sustainable agriculture. This review presents the effects of NPs on agricultural crops at biochemical, physiological and molecular levels. Numerous studies showed(More)
Sub clinical mastitis is an important disease of dairy cows and buffaloes causing huge economic losses in form of reduced milk production. In the current study, 125 animals (25 buffaloes, 30 crossbred cows, 15 Sahiwal and 55 Achai breed) apparently mastitis free, were selected for the collection of milk samples. These samples were subjected to surf test,(More)
Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica(More)
Phytoextraction is an eco-friendly and cost-effective technique for removal of toxins, especially heavy metals and metalloids from contaminated soils by the roots of high biomass producing plant species with subsequent transport to aerial parts. Lower metal bioavailability often limits the phytoextraction. Organic chelators can help to improve this(More)
Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic(More)
Trace elements (TEs) contamination is one of the main abiotic stresses which limit plant growth and deteriorate the food quality by their entry into food chain. In recent, biochar (BC) soil amendment has been widely reported for the reduction of TE(s) uptake and toxicity in plants. This review summarizes the role of BC in enhancing TE(s) tolerance in(More)
The cytotoxin-associated gene A (cagA), and the vacuolating cytotoxin gene A (vacA) products are considered the most important pathogenic determinants of Helicobacter pylori, a gram-negative bacterium causing gastrointestinal disorders such as duodenal ulcers, gastritis and mucosa-associated lymphoid tissue disease. A higher prevalence of H. pylori has been(More)