Muhammad Marwan Muhammad Fuad

Learn More
The differential evolution (DE) is a very powerful search method for solving many optimization problems. In this paper we present a new scheme (DESAX) based on the differential evolution to localize the breakpoints utilized with the symbolic aggregate approximation method; one of the most important symbolic representation techniques for times series data.(More)
The problem of similarity search is one of the main problems in computer science. This problem has many applications in text-retrieval, web search, computational biology, bioinformatics and others. Similarity between two data objects can be depicted using a similarity measure or a distance metric. There are numerous distance metrics in the literature, some(More)
Bio-inspired optimization algorithms have been gaining more popularity recently. One of the most important of these algorithms is particle swarm optimization (PSO). PSO is based on the collective intelligence of a swam of particles. Each particle explores a part of the search space looking for the optimal position and adjusts its position according to two(More)
The normalized edit distance is one of the distances derived from the edit distance. It is useful in some applications because it takes into account the lengths of the two strings compared. The normalized edit distance is not defined in terms of edit operations but rather in terms of the edit path. In this paper we propose a new derivative of the edit(More)
Similarity search is a fundamental problem in information technology. The main difficulty of this problem is the high dimensionality of the data objects. In large time series databases, it’s important to reduce the dimensionality of these data objects, so that we can manage them. Symbolic representation is a promising technique of dimensionality reduction.(More)
We propose a new multi-resolution indexing and retrieval method of the similarity search problem in time series databases. The proposed method is based on a fast-and-dirty filtering scheme that iteratively reduces the search space using several resolution levels. For each resolution level the time series are approximated by an appropriate function. The(More)