Learn More
Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb), highly repetitive (>80%) and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the(More)
The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does(More)
White lupin (Lupinus albus L.) has been around since 300 B.C. and is recognized for its ability to grow on poor soils and application as green manure in addition to seed harvest. The seed has very high levels of protein (33–47 %) and oil (6–13 %). It also has many secondary metabolites that are potentially of nutraceutical value to animals and humans.(More)
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with(More)
Genome mapping, or the experimental determination of the ordering of DNA markers on a chromosome, is an important step in genome sequencing and ultimate assembly of sequenced genomes. The presented research addresses the problem of identifying markers that cannot be placed reliably. If such markers are included in standard mapping procedures they can result(More)
The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more(More)
The process of mapping markers from radiation hybrid mapping (RHM) experiments is equivalent to the traveling salesman problem and, thereby, has combinatorial complexity. As an additional problem, experiments typically result in some unreliable markers that reduce the overall quality of the map. We propose a clustering approach for addressing both problems(More)
Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties(More)
In the course of evolution, the genomes of grasses have maintained an observable degree of gene order conservation. The information available for already sequenced genomes can be used to predict the gene order of nonsequenced species by means of comparative colinearity studies. The “Wheat Zapper” application presented here performs on-demand colinearity(More)