Learn More
Cell migration on 2D surfaces is governed by a balance between counteracting tractile and adhesion forces. Although biochemical factors such as adhesion receptor and ligand concentration and binding, signaling through cell adhesion complexes, and cytoskeletal structure assembly/disassembly have been studied in detail in a 2D context, the critical(More)
Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell-cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer.(More)
Although human epidermal growth factor receptor 2 (HER2) overexpression is implicated in tumor progression for a variety of cancer types, how it dysregulates signaling networks governing cell behavioral functions is poorly understood. To address this problem, we use quantitative mass spectrometry to analyze dynamic effects of HER2 overexpression on(More)
Cell migration plays a critical role in a wide variety of physiological and pathological phenomena as well as in scaffold-based tissue engineering. Cell migration behavior is known to be governed by biochemical stimuli and cellular interactions. Biophysical processes associated with interactions between the cell and its surrounding extracellular matrix may(More)
Although computational models for cell migration on two-dimensional (2D) substrata have described how various molecular and cellular properties and physiochemical processes are integrated to accomplish cell locomotion, the same issues, along with certain new ones, might contribute differently to a model for migration within three-dimensional (3D) matrices.(More)
The populations and transitions between Ramachandran basins are studied for combinations of the standard 20 amino acids in monomers, dimers and trimers using an implicit solvent Langevin dynamics algorithm and employing seven commonly used force-fields. Both the basin populations and inter-conversion rates are influenced by the nearest neighbor's(More)
Cell adhesions to both soluble and insoluble extracellular matrix ligands are critical in inter and intra-cellular signaling that mediates numerous physiological processes. These adhesions are complex structures composed of many scaffolding and signaling proteins. There are four distinct types of cell-matrix adhesions: focal complexes, focal adhesions,(More)
Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in complex systems comprised of heterogeneous cell types, signals and matrices, and requires large scale regulation in space and time. Understanding how cells achieve organized collective motility is crucial to addressing cellular and tissue function and disease(More)
Cell migration is a fundamental process that is crucial to a variety of physiological events. While traditional approaches have focused on two-dimensional (2D) systems, recent efforts have shifted to studying migration in three-dimensional (3D) matrices. A major distinction that has emerged is the increased importance of cell–matrix interactions in 3D(More)
While significant advances have been made toward revealing the molecular mechanisms that influence breast cancer progression, much less is known about the associated cellular mechanical properties. To this end, we use particle-tracking microrheology to investigate the interplay among intracellular mechanics, three-dimensional matrix stiffness, and(More)