Learn More
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from(More)
Calcineurin inhibitors such as cyclosporin A (CsA) are widely used to treat organ transplantation-associated complications. However, CsA use is limited due to renal dysfunction. This study attempts to characterize the mechanism of CsA-induced nephrotoxicity using a human embryonic kidney cell line (HK-2). We performed microarray-based whole-genome(More)
Toll-like receptors (TLRs) are pivotal components of the innate immune response, which is responsible for eradicating invading microorganisms through the induction of inflammatory molecules. These receptors are also involved in responding to harmful endogenous molecules and have crucial roles in the activation of the innate immune system and shaping the(More)
INTRODUCTION The revolutionary discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has exposed science to new horizons. However, genetic modifications render reprogrammed cells unstable; for that reason, non-genetic modification approaches are actively under investigation. Among these, the use of small molecules is safe, and these(More)
TLR4 in complex with MD2 senses the presence of lipid A (LA) and initiates a signaling cascade that curb the infection. This complex is evolutionarily conserved and can initiate the immune system in response to a variety of LAs. In this study, molecular dynamics simulation (25 ns) was performed to elucidate the differential behavior of TLR4/MD2 complex in(More)
Toll-like receptor (TLR) signaling has been implicated in the inflammatory responses in intestinal epithelial cells (IECs). Such inflammatory signals mediate complex interactions between commensal bacteria and TLRs and are required for IEC proliferation, immune response, repair, and homeostasis. The upregulation of certain TLRs in colorectal cancer (CRC)(More)
Activating transcription factor 3 (ATF3) is induced by inflammatory responses, cell death, cytokines, and oxidative stress conditions. ATF3 is a negative regulator in the Toll-like receptor 4 signalling pathway. The principal molecule in this pathway is nuclear factor κB (NF-κB) that translocates into the nucleus to initiate the transcription of(More)
INTRODUCTION Organisms have evolved a rapid and non-specific way to defend themselves via Toll-like receptors (TLRs), which recognize specific signatures present on invading microbes and viruses. Once detected, these receptors flood the cell with cytokines and IFNs that not only help to eradicate the invading viruses but also activate the adaptive immune(More)
Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These(More)
The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's(More)