Muhammad Asif Zahoor Raja

Learn More
A novel algorithm is developed based on fractional signal processing approach for parameter estimation of input nonlinear control autoregressive (INCAR) models. The design scheme consists of parameterization of INCAR systems to obtain linear-in-parameter models and to use fractional least mean square algorithm (FLMS) for adaptation of unknown parameter(More)
An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other(More)
In the present study, nature-inspired computing technique has been designed for the solution of nonlinear systems by exploiting the strength of particle swarm optimization (PSO) hybrid with Nelder–Mead method (NMM). Fitness function based on least square approximation theory is developed for the systems, while optimization of the design variables is(More)
Estimating the harmonic parameters is fundamental requirement for signal modelling in a power supply system. In this study, exploration and exploitation in fractional adaptive signal processing (FrASP) is carried out for identification of parameters in power signals. We design FrASP algorithms based on recently introduced variants of generalized least mean(More)
This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is(More)
In this work, an intelligent computing algorithm is developed for finding the approximate solution of heart model based on nonlinear Van der Pol (VdP)-type second-order ordinary differential equations (ODEs) using feed-forward artificial neural networks (FF-ANNs) optimized with genetic algorithms (GAs) hybrid through interior-point algorithm (IPA). The(More)
In this study, strength of evolutionary computational intelligence based on genetic algorithms (GAs) is exploited for parameter identification of nonlinear Hammerstein controlled autoregressive (NHCAR) systems. The fitness function is constructed for the NHCAR system by defining an error function in the mean square sense. Unknown adjustable weights of the(More)
In this study, nature-inspired computational intelligence is exploited for active noise control (ANC) systems using variants of particle swarm optimization (PSO) algorithm and its memetic combination with efficient local search technique based on active-set (AS), interior-point (IP), Nelder–Mead (NM) and sequential quadratic programming (SQP) algorithms. In(More)
BACKGROUND In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear(More)
In this paper, a bio-inspired computational intelligence technique is presented for solving nonlinear doubly singular system using artificial neural networks (ANNs), genetic algorithms (GAs), sequential quadratic programming (SQP) and their hybrid GA–SQP. The power of ANN models is utilized to develop a fitness function for a doubly singular nonlinear(More)