Muhamed-Kheir Taha

Learn More
Although the role of Toll-like receptors in extracellular bacterial sensing has been investigated intensively, intracellular detection of bacteria through Nod molecules remains largely uncharacterized. Here, we show that human Nod1 specifically detects a unique diaminopimelate-containing N-acetylglucosamine-N-acetylmuramic acid (GlcNAc-MurNAc) tripeptide(More)
  • M K Taha
  • Journal of clinical microbiology
  • 2000
A nonculture PCR-based method to characterize Neisseria meningitidis was used to test 225 clinical specimens. PCR correctly identified and predicted the serogroups of N. meningitidis of culture-proven meningococcal diseases and confirmed this diagnosis in 35% of suspected samples. This approach could be useful when culture fails to isolate N. meningitidis.
An outbreak of W135 meningococcal disease occurred in the spring of 2000 among pilgrims returning from Saudi Arabia and their contacts. Clinical isolates from England and France were examined and compared with reference strains from other countries. Characterisation of isolates by a range of typing methods showed them to be of clonal origin (ET-37) and(More)
BACKGROUND In Niger, epidemic meningococcal meningitis is primarily caused by Neisseria meningitidis (Nm) serogroup A. However, since 2002, Nm serogroup W135 has been considered to be a major threat that has not yet been realized, and an unprecedented incidence of Nm serogroup X (NmX) meningitis was observed in 2006. METHODS Meningitis surveillance in(More)
BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and(More)
In 2000, >400 cases of disease caused by Neisseria meningitidis serogroup W135 (MenW135), the largest MenW135 outbreak reported to date, occurred worldwide among Hajj pilgrims and their contacts. To elucidate the origin of the outbreak strains and to investigate their relatedness to major clonal groups, genotypic and phenotypic subtyping was performed on 26(More)
The Global Meningococcal Initiative (GMI) is composed of an international group of scientists, clinicians and public health officials with expertise in meningococcal immunology, epidemiology and prevention. The primary goal of the GMI is the promotion of the global prevention of invasive meningococcal disease through education and research. The GMI members(More)
Twenty clinical samples (18 cerebrospinal fluid samples and 2 articular fluid samples) were sent to 11 meningococcus reference centers located in 11 different countries. Ten of these laboratories are participating in the EU-MenNet program (a European Union-funded program) and are members of the European Monitoring Group on Meningococci. The remaining(More)
BACKGROUND Outer-membrane-vesicle vaccines for meningococcal B outbreaks are complex and time consuming to develop. We studied the use of already available vaccine to control an outbreak caused by a genetically close strain. METHODS From 2006 to 2009, all individuals younger than 20 years living in the region of Normandy, France, in which an outbreak(More)
Meningococcal infections occur as epidemics in the African meningitis belt. Neisseria meningitidis serogroup A is predominantly involved in these epidemics. We report here new data on the involvement of both serogroups A and W135 in meningitis cases in Burkina Faso and Niger at the end of the 2001 epidemic.