Mu-Hyun Baik

Learn More
The thermodynamics and kinetics for the monofunctional binding of the antitumor drug cisplatin, cis-diamminedichloroplatinum(II), to a purine base site of DNA were studied computationally using guanine and adenine as model reactants. A dominating preference for initial attack at the N7-position of guanine is established experimentally, which is a crucial(More)
A series of FL(n) (n = 1-5) ligands, where FL(n) is a fluorescein modified with a functionalized 8-aminoquinoline group as a copper-binding moiety, were synthesized, and the chemical and photophysical properties of the free ligands and their copper complexes were investigated. UV-visible spectroscopy revealed a 1:1 binding stoichiometry for the Cu(II)(More)
Indiana University provides powerful compute, storage, and network resources to a diverse local and national research community every day. IU's facilities have been used to support data-intensive applications ranging from digital humanities to computational biology.For this year's bandwidth challenge, several IU researchers will conduct experiments from the(More)
We elucidate the hydroxylation of camphor by cytochrome P450 with the use of density functional and mixed quantum mechanics/molecular mechanics methods. Our results reveal that the enzyme catalyzes the hydrogen-atom abstraction step with a remarkably low free-energy barrier. This result provides a satisfactory explanation for the experimental failure to(More)
The electronic structures of key species involved in methane hydroxylation performed by the hydroxylase component of soluble methane monooxygenase (sMMO), as proposed previously on the basis of high-level density functional theory, were investigated. The reaction starts with initial approach of methane at one of the bridging oxo atoms in intermediate Q, a(More)
Using broken-symmetry unrestricted Density Functional Theory, the mechanism of enzymatic dioxygen activation by the hydroxylase component of soluble methane monooxygenase (MMOH) is determined to atomic detail. After a thorough examination of mechanistic alternatives, an optimal pathway was identified. The diiron(II) state H(red) reacts with dioxygen to give(More)
Electron-transfer energetics of bridged dinuclear compounds of the form [(CO)(4)M(mu-L)](2)(0/1-/2-) (M = Mo, W; L = PPh(2)(-), SPh(-)) were explored using density functional theory coupled to a continuum solvation model. The experimentally observed redox potential inversion, a situation where the second of two electron transfers is more thermodynamically(More)
Four new helical oligoproline assemblies containing 16, 17, 18, and 19 proline residues and ordered arrays of a Ru(II)-bipyridyl chromophore and a phenothiazine electron-transfer donor have been synthesized in a modular fashion by solid-phase peptide synthesis. These arrays are illustrated and abbreviated as(More)
Appropriately designed chemical architectures can fold to adopt well-defined secondary structures without the need for structural motifs of biological origin. We have designed tris(N-salicylideneaniline)-based hyperbranched molecules that spontaneously collapse to compact three-blade propeller geometry of either (P)- or (M)-handedness. For a homologous(More)