Learn More
Gold nanoparticles (AuNPs) provide non-toxic carriers for drug and gene delivery applications. With these systems, the gold core imparts stability to the assembly, while the monolayer allows tuning of surface properties such as charge and hydrophobicity. An additional attractive feature of AuNPs is their interaction with thiols, providing an effective and(More)
This study concerns the self-assembly of virus-like particles (VLPs) composed of an icosahedral virus protein coat encapsulating a functionalized spherical nanoparticle core. The recent development of efficient methods for VLP self-assembly has opened the way to structural studies. Using electron microscopy with image reconstruction, the structures of(More)
Self-assembling icosahedral protein cages have potentially useful physical and chemical characteristics for a variety of nanotechnology applications, ranging from therapeutic or diagnostic vectors to building blocks for hierarchical materials. For application-specific functional control of protein cage assemblies, a deeper understanding of the interaction(More)
The development of MRI contrast agents has experienced its version of the gilded age over the past decade, thanks largely to the rapid advances in nanotechnology. In addition to progress in single mode contrast agents, which ushered in unprecedented R(1) or R(2) sensitivities, there has also been a boon in the development of agents covering more than one(More)
Incorporation of CdSe/ZnS semiconductor quantum dots (QDs) into viral particles provides a new paradigm for the design of intracellular microscopic probes and vectors. Several strategies for the incorporation of QDs into viral capsids were explored; those functionalized with poly(ethylene glycol) (PEG) can be self-assembled into viral particles with minimal(More)
Water-soluble gold nanoparticles bearing diverse l-amino acid terminals have been fabricated to probe the effect of receptor surface on protein surface binding. The interaction of these nanoparticles with alpha-chymotrypsin (ChT) was investigated by activity assay, gel electrophoresis, zeta-potential, circular dichroism, and fluorescence spectroscopy. The(More)
Two sorts of MoS2 : A single-layer, metallic form of MoS2 (1T-MoS2 ) and a nanocomposite of a second form of MoS2 (few-layer 2H-MoS2 ) with heavily nitrogenated reduced graphene oxide (NRGO; N content ca. 15 %) show outstanding performance in the production of H2 under visible-light illumination.
One way to image the molecular pathology in Alzheimer's disease is by positron emission tomography using probes that target amyloid fibrils. However, these fibrils are not closely linked to the development of the disease. It is now thought that early-stage biomarkers that instigate memory loss are composed of Aβ oligomers. Here, we report a sensitive(More)
Alphaviruses are animal viruses holding great promise for biomedical applications as drug delivery vectors, functional imaging probes, and nanoparticle delivery vesicles because of their efficient in vitro self-assembly properties. However, due to their complex structure, with a protein capsid encapsulating the genome and an outer membrane composed of(More)
Self-assembly of regular protein surfaces around nanoparticle templates provides a new class of hybrid biomaterials with potential applications in medical imaging and in bioanalytical sensing. We report here the first example of efficiently self-assembled virus-like particles (VLPs) having a brome mosaic virus protein coat and a functionalized gold core.(More)