Learn More
The past several years have seen an increasing interest in telomere recombinational interactions that provide many functions in telomere capping, in telomere size homeostasis and in overcoming the catastrophic effects of telomerase deficiency. Several key recombination mechanisms have emerged from recent investigations. In the yeasts, these mechanisms(More)
Telomeric rapid deletion (TRD) is an intrachromatid recombination process that truncates over-elongated telomeres to the genetically determined average telomere length. We have proposed that TRD is initiated by invasion of the 3' G-rich overhang into centromere-proximal telomere sequence, forming an intermediate that leads to excision of the distal telomere(More)
The inhibition of Hsp90 in cancerous cells has been correlated with the reduction in double-strand break (DSB repair) activity. However, the precise effect of Hsp90 on the DSB repair pathway in normal cells has remained enigmatic. Our results show that the Hsp82 chaperone, the ortholog of mammalian Hsp90, is indispensable for homologous-recombination(More)
Molecular mechanisms underlying the interaction between malarial sporozoites and putative receptor(s) on the salivary glands of Anopheles gambiae remain largely unknown. In previous studies, a salivary gland protein of ~100 kDa was identified as a putative target based on recognition of the protein by a monoclonal antibody (mAb) 2A3 that caused a >/= 70%(More)
In recent years, Hsp90 is found to interact with several telomeric proteins at various phases of cell cycle. The Hsp90 chaperone system controls assembly and disassembly of telomere structures and thus maintains the dynamic state of telomere. Here, for the first time we report that the activity of another telomeric protein Sir2p is modulated by Hsp82, the(More)
A major impediment to vaccine development against infections caused by protozoan parasites such as Plasmodium falciparum and Trypanosoma is the extraordinary ability of these parasites to rapidly change their surface molecules, a phenomenon known as antigenic variation. A prominent determinant of antigenic variation in these organisms is associated with(More)
Rad51 protein, the eukaryotic homologue of Escherichia coli RecA protein plays a pivotal role in recombinational repair mechanism. We have identified a new homologue of Rad51 from the apicomplexan parasite Plasmodium falciparum, designated PfRad51. The PfRad51 gene codes for a 351 amino acid polypeptide with a predicted molecular mass of 38720, and shares(More)
Terminally differentiated malarial gametocytes remain in the vertebrate circulation in a developmentally arrested state until they are taken up by the mosquito. The gametocytes then undergo gametogenesis in the mosquito mid-gut within minutes after ingestion of the infected blood meal. The male gametogenesis (exflagellation) can be triggered by the(More)
We have identified a new homologue of protein phosphatase type 1 from Plasmodium falciparum, designated PfPP1, which shows 83-87% sequence identity with yeast and mammalian PP1s at the amino acid level. The PfPP1 sequence is strikingly different from all other P. falciparum Ser/Thr phosphatases cloned so far. The deduced 304 amino acid sequence revealed the(More)
Although homologous recombination-mediated DNA rearrangements are quite widespread in Plasmodium falciparum, the molecular mechanisms involved are essentially unknown. Recent identification of PfRad51 in P. falciparum has suggested that it may play central role during homologous recombination and DNA rearrangements. Full-length recombinant PfRad51 was over(More)