Mrinal Haloi

Learn More
Matching pedestrians across multiple camera views, known as human re-identification, is a challenging research problem that has numerous applications in visual surveillance. With the resurgence of Convolutional Neural Networks (CNNs), several end-to-end deep Siamese CNN architectures have been proposed for human re-identification with the objective of(More)
In this work, we have developed a robust lane detection and departure warning technique. Our system is based on single camera sensor. For lane detection a modified Inverse Perspective Mapping using only a few extrinsic camera parameters and illuminant Invariant techniques is used. Lane markings are represented using a combination of 2nd and 4th order(More)
In this work we developed a novel and fast traffic sign recognition system, a very important part for advanced driver assistance system and for autonomous driving. Traffic signs play a very vital role in safe driving and avoiding accident. We have used image processing and topic discovery model pLSA to tackle this challenging multiclass classification(More)
In the context of Computer Aided Diagnosis system for diabetic retinopathy, we present a novel method for detection of exudates and their classification for disease severity prediction. The method is based on Gaussian scale space based interest map and mathematical morphology. Iit makes use of support vector machine for classification and location(More)
In this work, we propose a novel deep networks for traffic sign classification that achieves outstanding performance on GTSRB surpassing all previous methods. Our deep network consists of spatial transformer layers and a modified version of inception module specifically designed for capturing local and global features together. This features adoption allows(More)
Generalization error defines the discriminability and the representation power of a deep model. In this work, we claim that feature space design using deep compositional function plays a significant role in generalization along with explicit and implicit regularizations. Our claims are being established with several image classification experiments. We show(More)
In this work, we present the problem of rash driving detection algorithm using a single wide angle camera sensor, particularly useful in the Indian context. To our knowledge this rash driving problem has not been addressed using Image processing techniques (existing works use other sensors such as accelerometer). Car Image processing literature, though rich(More)
Deep convolutional semantic segmentation (DCSS) learning doesn’t converge to an optimal local minimum with random parameters initializations; a pre-trained model on the same domain becomes necessary to achieve convergence.In this work, we propose a joint cooperative end-to-end learning method for DCSS. It addresses many drawbacks with existing deep semantic(More)