Learn More
S-nitrosoglutathione (GSNO) is considered a natural nitric oxide (NO.) reservoir and a reactive nitrogen intermediate in animal cells, but little is known about this molecule and its metabolism in plant systems. In this work, using pea plants as a model system, the presence of GSNO in collenchyma cells was demonstrated by an immunohistochemical method. When(More)
NADPH is an important molecule in the redox balance of the cell. In this paper, using olive tissue cultures as a model of the function of the NADPH-generating dehydrogenases in the mechanism of oxidative stress induced by severe salinity conditions was studied. When olive (Olea europaea) plants were grown with 200 mM NaCl, a 40% reduction in leaf fresh(More)
Tyrosine nitration is recognized as an important post-translational protein modification in animal cells that can be used as an indicator of a nitrosative process. However, in plant systems, there is scant information on proteins that undergo this process. In sunflower hypocotyls, the content of tyrosine nitration (NO(2)-Tyr) and the identification of(More)
Nitric oxide (.NO) has been shown to participate in plant response against pathogen infection; however, less is known of the participation of other NO-derived molecules designated as reactive nitrogen species (RNS). Using two sunflower (Helianthus annuus L.) cultivars with different sensitivity to infection by the pathogen Plasmopara halstedii, we studied(More)
Nitrosative stress has become a usual term in the physiology of nitric oxide in mammalian systems. However, in plants there is much less information on this type of stress. Using olive leaves as experimental model, the effect of salinity on the potential induction of nitrosative stress was studied. The enzymatic l-arginine-dependent production of nitric(More)
Nitric oxide (*NO) is a key signaling molecule in different physiological processes of animals and plants. However, little is known about the metabolism of endogenous *NO and other reactive nitrogen species (RNS) in plants under abiotic stress conditions. Using pea plants exposed to six different abiotic stress conditions (high light intensity, low and high(More)
Nitric oxide (NO), a free radical generated in plant cells, belongs to a family of related molecules designated as reactive nitrogen species (RNS). When an imbalance of RNS takes place for any adverse environmental circumstances, some of these molecules can cause direct or indirect damage at the cellular or molecular level, promoting a phenomenon of(More)
Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of(More)
Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light(More)
Environmental contamination by arsenic constitutes a problem in many countries, and its accumulation in food crops may pose health complications for humans. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved at various levels in the mechanism of responding to environmental stress in higher plants. Using Arabidopsis seedlings(More)