Learn More
Ionizing radiation (IR)-enhanced tumor invasiveness is emerging as a contributor to the limited benefit of radiotherapy; however, its mechanism is still unclear. We previously showed that subcloned lung adenocarcinoma A549 cells (P cells), which survived 10 Gy IR (IR cells), acquired high invasiveness in vitro. Here, we tried to identify the mechanism by(More)
The adenovirus E4orf6 is a viral oncoprotein known to cooperate with the E1A gene product in transforming primary murine cells. It has been shown to inhibit the apoptotic activities of p53 and p73 through direct binding to these proteins. Here, we demonstrate that the adenovirus E4orf6 protein inhibits apoptosis mediated by BNIP3 and Bik, which are BH3-only(More)
Radiotherapy is effective for treating various types of tumors. However, some cancer cells survive after irradiation and repopulate tumors with highly malignant phenotypes that correlate with poor prognosis. It is not known how cancer cells survive and generate malignant tumors after irradiation. Here, we show that activating transcription factor 5 (ATF5)(More)
Radiotherapy is one of the major treatment modalities for malignancies. However, cells surviving irradiation often display high levels of invasiveness. This study shows that irradiation-tolerant lung adenocarcinoma demonstrates high invasive capability depending on dephosphorylation of the myosin regulatory light chain (MRLC). In a collagen gel overlay(More)
  • 1