Learn More
This paper presents a method for estimating the instantaneous frequency (IF) of multicomponent signals. The technique involves, firstly, the transformation of the one-dimensional signal to the two-dimensional time–frequency (TF) domain using a reduced interference quadratic TF distribution. IF estimation of signal components is then achieved by implementing(More)
In this paper, we investigate the use of heart rate variability (HRV) for automatic newborn seizure detection. The proposed method consists of a sequence of processing steps, namely, obtaining HRV from the ECG, extracting a discriminating HRV feature set, selecting an optimal subset from the full feature set, and, finally, classifying the HRV into(More)
The detection of seizure in the newborn is a critical aspect of neurological research. Current automatic detection techniques are difficult to assess due to the problems associated with acquiring and labelling newborn electroencephalogram (EEG) data. A realistic model for newborn EEG would allow confident development, assessment and comparison of these(More)
The potential improvements in spatial resolution of neonatal EEG used in source localization have been challenged by the insufficiencies in realistic neonatal head models. Our present study aimed at using empirical methods to indirectly estimate skull conductivity; the model parameter that is known to significantly affect the behavior of newborn scalp EEG(More)
Relationships between cortical neural recordings as a representation of functional connectivity between cortical brain regions were quantified using different time-frequency criteria. Among these, Partial Directed Coherence (PDC) and Directed Transfer Function (DTF) and their extensions have found wide acceptance. This paper aims to assess and compare the(More)
The nonstationary and multicomponent nature of newborn EEG seizures tends to increase the complexity of the seizure detection problem. In dealing with this type of problems, time-frequency-based techniques were shown to outperform classical techniques. This paper presents a new time-frequency-based EEG seizure detection technique. The technique uses an(More)
The ECG has been much neglected in automatic seizure detection in the newborn. Changes in heart rate and ECG rhythm are often found in animal and adult patients with seizure. However, little is known about heart rate variability (HRV) changes in human neonate during seizure. Results of ongoing time-frequency research are presented here with the aim to(More)
This paper presents a new relative measure of signal complexity, referred to here as relative structural complexity (RSC), which is based on the matching pursuit (MP) decomposition. By relative, we refer to the fact that this new measure is highly dependent on the decomposition dictionary used by MP. The structural part of the definition points to the fact(More)