Mostapha Benhenda

Learn More
Let M be a smooth compact connected manifold, on which there exists an effective smooth circle action S t preserving a positive smooth volume. We show that on M, the smooth closure of the smooth volume-preserving conjugation class of some Liouville rotations S α of angle α contains a smooth volume-preserving diffeomorphism T that is metrically isomorphic to(More)
We construct an uncountable family of smooth ergodic zero-entropy diffeo-morphisms that are pairwise non-Kakutani equivalent, on any smooth compact connected manifold of dimension greater than two, on which there exists an effective smooth circle action preserving a positive smooth volume. To that end, we first construct a smooth ergodic zero-entropy and(More)
  • 1