Gurwattan S Miranpuri3
Daniel K Resnick3
Kristopher T Kahle2
Kevin C King2
3Gurwattan S Miranpuri
3Daniel K Resnick
2Kristopher T Kahle
2Kevin C King
Learn More
Neuropathic pain is a common problem following spinal cord injury (SCI). Effective analgesic therapy has been hampered by the lack of knowledge about the mechanisms underlying post-SCI neuropathic pain. Current evidence suggests GABAergic spinal nociceptive processing is a critical functional node in this complex phenotype, representing a potential target(More)
Millions of people suffer from spinal cord injury (SCI) with little known effective clinical therapy. Neuropathic pain (NP) is often accompanied with SCI, making clinical treatment challenging. Even though the key mediators in the development of NP have been discovered, the pathogenesis is still unclear. Some of the key mediators in the sustenance of NP(More)
BACKGROUND CONTEXT There is increasing evidence for a role of the cannabinoid (CB) system in the development of neuropathic pain (NP) after spinal cord injury (SCI). The nonspecific CB₁ and CB₂ receptor agonists, WIN 55, 212-2 (WIN), have previously been shown to alleviate both mechanical and thermal hyperalgesia (TH) after peripheral nerve injury. (More)
BACKGROUND CONTEXT NKCC1 regulates neuronal homeostasis of chloride ions and mediates GABAergic activities in nociceptive processing. WNK1 is an upstream regulator of NKCC1 and acts via SPAK (STE20/SPS1-related proline/alanine-rich kinase) and oxidative stress-responsive kinase 1. NKCC1 activity has been shown to be important in edema formation and(More)
BACKGROUND Neuropathic pain (NP) is a common occurrence following spinal cord injury (SCI). Identification of specific molecular pathways that are involved in pain syndromes has become a major priority in current SCI research. We have investigated the role of a cation-dependent chloride transporter, Cl-regulatory protein Na(+)-K(+)-Cl(-) 1 (NKCC1),(More)
  • 1