Learn More
Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN'(More)
Maternal care influences hypothalamic-pituitary-adrenal (HPA) function in the rat through epigenetic programming of glucocorticoid receptor expression. In humans, childhood abuse alters HPA stress responses and increases the risk of suicide. We examined epigenetic differences in a neuron-specific glucocorticoid receptor (NR3C1) promoter between postmortem(More)
Early-life experience has long-term consequences on behavior and stress responsivity of the adult. We previously proposed that early-life experience results in stable epigenetic programming of glucocorticoid receptor gene expression in the hippocampus. The aim of this study was to examine the global effect of early-life experience on the hippocampal(More)
DNA-methylation patterns are important for regulating genome functions, and are determined by the enzymatic processes of methylation and demethylation. The demethylating enzyme has now been identified: a mammalian complementary DNA encodes a methyl-CpG-binding domain, bears a demethylase activity that transforms methylated cytosine bases to cytosine, and(More)
Mammalian genomes are compartmentalized into dense inactive chromatin that is hypermethylated and active open chromatin that is hypomethylated. It is generally accepted that this bimodal pattern of methylation is established during development and is then faithfully inherited through subsequent cell divisions by a maintenance DNA methyltransferase (DNMT1).(More)
BACKGROUND Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic changes at(More)
Early experience permanently alters behavior and physiology. These effects are, in part, mediated by sustained alterations in gene expression in selected brain regions. The critical question concerns the mechanism of these environmental "programming" effects. We examine this issue with an animal model that studies the consequences of variations in(More)
In this report, we demonstrate that valproic acid (VPA), a drug that has been used for decades in the treatment of epilepsy and as a mood stabilizer, triggers replication-independent active demethylation of DNA. Thus, this drug can potentially reverse DNA methylation patterns and erase stable methylation imprints on DNA in non-dividing cells. Recent(More)
The pattern of DNA methylation plays an important role in regulating different genome functions. To test the hypothesis that DNA methylation is a reversible biochemical process, we purified a DNA demethylase from human cells that catalyzes the cleavage of a methyl residue from 5-methyl cytosine and its release as methanol. We show that similar to DNA(More)
The genome is programmed by the epigenome. Two of the fundamental components of the epigenome are chromatin structure and covalent modification of the DNA molecule itself by methylation. DNA methylation patterns are sculpted during development and it has been a long held belief that they remain stable after birth in somatic tissues. Recent data suggest that(More)