Moshe Fresko

Learn More
Information published in online stock investment message boards, and more recently in stock microblogs, is considered highly valuable by many investors. Previous work focused on aggregation of sentiment from all users. However, in this work we show that it is beneficial to distinguish expert users from non-experts. We propose a general framework for(More)
Knowledge Discovery in Databases (KDD) focuses on the computerized exploration of large amounts of data and on the discovery of interesting patterns within them. While most work on KDD has been concerned with structured databases, there has been little work on handling the huge amount of information that is available only in unstructured textual form.(More)
W 2.0 provides gathering places for Internet users in blogs, forums, and chat rooms. These gathering places leave footprints in the form of colossal amounts of data regarding consumers’ thoughts, beliefs, experiences, and even interactions. In this paper, we propose an approach for firms to explore online user-generated content and “listen” to what(More)
The Stock Sonar (TSS) is a stock sentiment analysis application based on a novel hybrid approach. While previous work focused on document level sentiment classification, or extracted only generic sentiment at the phrase level, TSS integrates sentiment dictionaries, phrase-level compositional patterns, and predicate-level semantic events. TSS generates(More)
This paper describes a hybrid statistical and knowledge-based information extraction model, able to extract entities and relations at the sentence level. The model attempts to retain and improve the high accuracy levels of knowledge-based systems while drastically reducing the amount of manual labor by relying on statistics drawn from a training corpus. The(More)
We describe a new tool for mining association rules, which is of special value in text mining. The new tool, called maximal associations, is geared toward discovering associations that are frequently lost when using regular association rules. Intuitively, a maximal association rule $${X}\stackrel{\rm max}{\Longrightarrow}{Y}$$ says that whenever X is the(More)
In recent years, product discussion forums have become a rich environment in which consumers and potential adopters exchange views and information. Researchers and practitioners are starting to extract user sentiment about products from user product reviews. Users often compare different products, stating which they like better and why. Extracting(More)