Learn More
  • Moshe Bar
  • Journal of cognitive neuroscience
  • 2003
The majority of the research related to visual recognition has so far focused on bottom-up analysis, where the input is processed in a cascade of cortical regions that analyze increasingly complex information. Gradually more studies emphasize the role of top-down facilitation in cortical analysis, but it remains something of a mystery how such processing(More)
Cortical analysis related to visual object recognition is traditionally thought to propagate serially along a bottom-up hierarchy of ventral areas. Recent proposals gradually promote the role of top-down processing in recognition, but how such facilitation is triggered remains a puzzle. We tested a specific model, proposing that low spatial frequencies(More)
Rather than passively 'waiting' to be activated by sensations, it is proposed that the human brain is continuously busy generating predictions that approximate the relevant future. Building on previous work, this proposal posits that rudimentary information is extracted rapidly from the input to derive analogies linking that input with representations in(More)
Objects in our environment tend to be grouped in typical contexts. How does the human brain analyze such associations between visual objects and their specific context? We addressed this question in four functional neuroimaging experiments and revealed the cortical mechanisms that are uniquely activated when people recognize highly contextual objects (e.g.,(More)
The parahippocampal cortex (PHC) has been implicated in the processing of place-related information. It has also been implicated in episodic memory, even for items that are not related to unique places. How could the same cortical region mediate such seemingly different cognitive processes? Both processes rely on contextual associations, and we therefore(More)
The cortical mechanisms associated with conscious object recognition were studied using functional magnetic resonance imaging (fMRI). Participants were required to recognize pictures of masked objects that were presented very briefly, randomly and repeatedly. This design yielded a gradual accomplishment of successful recognition. Cortical activity in a(More)
  • Moshe Bar
  • Philosophical transactions of the Royal Society…
  • 2009
It is proposed that the human brain is proactive in that it continuously generates predictions that anticipate the relevant future. In this proposal, analogies are derived from elementary information that is extracted rapidly from the input, to link that input with the representations that exist in memory. Finding an analogical link results in the(More)
People see with feeling. We 'gaze', 'behold', 'stare', 'gape' and 'glare'. In this paper, we develop the hypothesis that the brain's ability to see in the present incorporates a representation of the affective impact of those visual sensations in the past. This representation makes up part of the brain's prediction of what the visual sensations stand for in(More)
Object recognition is traditionally viewed as a hierarchical, bottom-up neural process. This view has been challenged recently by theoretical models and by findings indicating that top-down processes are involved in facilitating recognition. However, how such high-level information can be activated quickly enough to facilitate the bottom-up processing is(More)