Learn More
Previous studies have shown that intracortical activity can be used to operate prosthetic devices such as an artificial limb. Previously used neuronal signals were either the activity of tens to hundreds of spiking neurons, which are difficult to record for long periods of time, or local field potentials, which are highly correlated with each other. Here,(More)
This paper examines the feasibility of manifesting compositionality by a system of synfire chains. Compositionality is the ability to construct mental representations, hierarchically, in terms of parts and their relations. We show that synfire chains may synchronize their waves when a few orderly cross links are available. We propose that synchronization(More)
Correlated neural activity has been observed at various signal levels (e.g., spike count, membrane potential, local field potential, EEG, fMRI BOLD). Most of these signals can be considered as superpositions of spike trains filtered by components of the neural system (synapses, membranes) and the measurement process. It is largely unknown how the spike(More)
Competitive synchronization among synfire chains may model the dynamics of binding and compositionality. Typically, such models require simulations of hundreds of thousands of neurons. Here we show that the behavior of such large systems can be numerically analyzed by representing the neuronal activity in a synfire chain as a wave. The position and velocity(More)
Previous studies have suggested that several types of rules govern the generation of complex arm movements. One class of rules consists of optimizing an objective function (e.g., maximizing motion smoothness). Another class consists of geometric and kinematic constraints, for instance the coupling between speed and curvature during drawing movements as(More)
Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing(More)
Neural activity has been studied during reaching and grasping separately, yet little is known about their combined representation. To study the functional organization of reaching and grasping in the premotor cortex (PM), we trained two monkeys to reach in one of six directions and grasp one of three objects. During prehensile movements, activity of(More)
Despite many reports indicating the existence of precise firing sequences in cortical activity, serious objections have been raised regarding the statistics used to detect them and the relations of these sequences to behavior. We show that in behaving monkeys, pairs of spikes from different neurons tend to prefer certain time delays when measured in(More)
Recent studies suggested that a single motor cortical neuron typically encodes multiple movement parameters, but parameters often display strong temporal interdependencies. To address this issue, we recorded single-unit activity while macaque monkeys made continuous movements and employed an analysis that explicitly considered temporal correlations between(More)