Learn More
Correlated neural activity has been observed at various signal levels (e.g., spike count, membrane potential, local field potential, EEG, fMRI BOLD). Most of these signals can be considered as superpositions of spike trains filtered by components of the neural system (synapses, membranes) and the measurement process. It is largely unknown how the spike(More)
This paper examines the feasibility of manifesting compositionality by a system of synfire chains. Compositionality is the ability to construct mental representations, hierarchically, in terms of parts and their relations. We show that synfire chains may synchronize their waves when a few orderly cross links are available. We propose that synchronization(More)
Competitive synchronization among synfire chains may model the dynamics of binding and compositionality. Typically, such models require simulations of hundreds of thousands of neurons. Here we show that the behavior of such large systems can be numerically analyzed by representing the neuronal activity in a synfire chain as a wave. The position and velocity(More)
Previous studies have suggested that several types of rules govern the generation of complex arm movements. One class of rules consists of optimizing an objective function (e.g., maximizing motion smoothness). Another class consists of geometric and kinematic constraints, for instance the coupling between speed and curvature during drawing movements as(More)
We investigate the formation of synfire waves in a balanced network of integrate-and-fire neurons. The synaptic connectivity of this network embodies synfire chains within a sparse random connectivity. This network can exhibit global oscillations but can also operate in an asynchronous activity mode. We analyze the correlations of two neurons in a pool as(More)
We investigate the formation of ordered spatiotemporal activations of pools of neurons in synfire chains (SFC) within a balanced network, both by simulations and by analytic tools. Using a suitable matrix of synaptic connections, we show that the results depend on the ratio between the size of an individual pool of neurons (w) and the total excitatory input(More)
The signature of neuronal assemblies is the higher-order correlation structure of the spiking activity of the participating neurons. Due to the rapid progress in recording technology the massively parallel data required to search for such signatures are now becoming available. However, existing statistical analysis tools are severely limited by the(More)