Learn More
Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling(More)
The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III(More)
The era of growth factor research began fifty years ago with the discovery of nerve growth factor (NGF). Since then, the momentum to study the NGF — or neu-rotrophin — family has never abated because of their continuous capacity to provide new insights into neural function; the influence of neurotrophins spans from developmental neurobiology to(More)
We have generated mice carrying a mutation of the gene encoding the low affinity NGF receptor p75NGFR by targeted mutation in embryonic stem cells. Mice homozygous for the mutation were viable and fertile. Immunohistochemical analyses of the footpad skin of mutant mice revealed markedly decreased sensory innervation by calcitonin gene-related peptide- and(More)
The trk proto-oncogene encodes a 140-kilodalton, membrane-spanning protein tyrosine kinase (p140prototrk) that is expressed only in neural tissues. Nerve growth factor (NGF) stimulates phosphorylation of p140prototrk in neural cell lines and in embryonic dorsal root ganglia. Affinity cross-linking and equilibrium binding experiments with 125I-labeled NGF(More)
The neurotrophin family of survival factors is distinguished by a unique receptor-signaling system that is composed of two transmembrane receptor proteins. Nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3 (NT-3) and NT-4/5 share similar protein structures and biological functions and interact with two different types of(More)
Members of the nerve growth factor (NGF) family promote the survival of neurons during development. NGF specifically activates the receptor trkA, initiating a signal transduction cascade which ultimately blocks cell death. Here we show that NGF can have the opposite effect, inducing the death of mature oligodendrocytes cultured from postnatal rat cerebral(More)
Neurotrophins regulate neuronal cell survival and synaptic plasticity through activation of Trk receptor tyrosine kinases. Binding of neurotrophins to Trk receptors results in receptor autophosphorylation and downstream phosphorylation cascades. Here, we describe an approach to use small molecule agonists to transactivate Trk neurotrophin receptors.(More)
In addition to the Trk tyrosine kinase receptors, neurotrophins also bind to a second receptor, p75, a member of the tumor necrosis factor receptor superfamily. Several signaling pathways have been implicated for p75 in the absence of Trk receptors, including induction of NF-kappaB and c-Jun kinase activities and increased production of ceramide. However,(More)