Moses A. Cho

Learn More
Several methods for extracting the chlorophyll sensitive red-edge position (REP) from hyperspectral data are reported in literature. This study is a continuation of a recent paper published as ‘A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method’. The method was validated experimentally for(More)
Remote sensing is viewed as a cost-effective alternative to intensive field surveys in assessing site factors that affect growth of Eucalyptus grandis over broad areas. The objective of this study was to assess the utility of hyperspectral remote sensing to discriminate between site qualities in E. grandis plantation in KwaZulu-Natal, South Africa. The(More)
Developments in hyperspectral remote sensing have provided new indices or indicators of biochemical and biophysical properties. Most of the studies involving the novel spectral indices have been conducted at the leaf scale and have been rarely investigated for species discrimination. The objectives of the study were to determine hyperspectral indices that(More)
The advent of hyperspectral remote sensing has provided new opportunities for species mapping. However, the high dimensionality of hyperspectral data limits the application of parametric classifiers for species mapping because of the demand for a large number of training samples. This situation could change with the arrival of new spaceborne multispectral(More)
The state (type, structure and biochemical content or vitality) of natural and agroecosystems are influenced by several factors including available nutrients, soil types, and topographic and climatic factors. In other words, foliar biochemicals (e.g. chlorophyll, Nitrogen) for example may provide information on the factors controlling growth and(More)
Understanding the spatio-temporal dynamics of land surface phenology is important to understanding changes in landscape ecological processes of semi-arid savannas in Southern Africa. The aim of the study was to determine the influence of variation in tree cover percentage on land surface phenological response in the semi-arid savanna of Southern Africa.(More)
  • 1