Morten F Ebbesen

Learn More
This work describes a method for functionalisation of nanoparticle surfaces with hydrophilic “nano-shields” and the application of advanced surface characterisation to determine PEG amount and accumulation at the outmost 10 nm surface that is the predominant factor in determining protein and cellular interactions. Poly(lactic-co-glycolic acid) (PLGA)(More)
In this work we specifically investigate the molecular weight (Mw) dependent combinatorial properties of hyaluronic acid (HA) for exhibiting stealth and targeting properties using different Mw HA nanoshells to tune nanoparticle retargeting to CD44-expressing cancer cells. HA of different Mw was covalently grafted onto model polystyrene nanoparticles and(More)
Cancer disorders exhibit an increasing high global incidence, in part, to an aging population with a high socio-economic burden. The cellular transition from normal to malignant state is linked to deregulated gene expression. The discovery of microRNA-mediated cellular regulation by the RNA interference (RNAi) pathway and the possibility to engage this(More)
We recently synthesized a hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide-co-N-(3-azidopropyl)methacrylamide), p(HPMA-co-AzMA), by RAFT polymerization using a novel azide-containing methacrylamide monomer that through a post modification strategy using click chemistry enabled facile preparation of a panel of versatile and well-defined(More)
A versatile approach for the synthesis of sequence-controlled multiblock copolymers, using a combination of solid phase synthesis and step-growth polymerization by photoinduced thiol-ene coupling (TEC) is presented. Following this strategy, a series of sequence-controlled glycopolymers is derived from the polymerization of a hydrophilic spacer macromonomer(More)
The long circulatory half-life of albumin facilitated by the interaction with the cellular recycling neonatal Fc receptor (FcRn) is utilized for drug half-life extension. FcRn engagement effects following covalent attachment of cargo to cysteine 34, however, have not been investigated. Poly(ethylene glycol) polymers were used to study the influence of cargo(More)
This study investigates the effects of different molecular weight hyaluronic acids (HAs) on the mucosal nanostructure using a pig stomach mucin hydrogel as a mucosal barrier model. Microparticles (1.0 μm) and nanoparticles (200 nm) were used as probes, and their movement in mucin was studied by a three-dimensional confocal microscopy-based particle tracking(More)
  • 1