Morris J Clarke

Learn More
Estimates of the net equilibrium binding constants for [(H2O)(NH3)5RuII]2+, [Cl(NH3)5RuIII]2+, cis-[(H2O)2(NH3)4RuII]2+ and cis-[Cl2(NH3)4RuIII]+ with apotransferrin (Tf) and holotransferrin (Fe2Tf) suggests that RuIII, but not RuII complexes bind with a higher affinity to the iron binding sites. Several other presumably histidyl imidazole sites bind with(More)
The reduction of Cl(NH3)5Ru(III) and subsequent binding of heterocyclic ligands by the resultant (H2O)(NH3)5Ru(II) ion is shown to be catalyzed by components of rat-liver cells. The presence of air significantly decreases the rate of heterocyclic ligand binding. In the case of microsome and soluble component catalysis, this is probably due to oxidation of(More)
 The synthesis, spectroscopic, and electrochemical properties of trans-[L(Pyr)(NH3)4RuII/III] (Pyr=py, 3-phpy, 4-phpy, 3-bnpy, or 4-bnpy; L=H2O, Guo, dGuo, 1MeGuo, Gua, Ino, or G7-DNA) are reported. As expected, the Pyr ligand slows DNA binding by trans-[(H2O)(Pyr)(NH3)4RuII]2+ relative to [(H2O)(NH3)5RuII]2+ and favors reduction of RuIII by about 150 mV.(More)
The synthesis of a novel series of 3-phenylprop-2-ynylamines as selective mammalian squalene epoxidase inhibitors is described. Structure activity relationship studies led to the discovery of compound 19, 1-[3-(3,5-dichlorophenyl)-prop-2-ynyl]-3- methylpiperidine hydrochloride with an IC50 of 2.8 +/- 0.6 microM against rat liver squalene epoxidase. Against(More)
Pentaammineruthenium moves on ambidentate nitrogen heterocycles by both rotation and linkage isomerization, which may affect the biological activity of potential ruthenium metallopharmaceuticals. The rapid rotation rates of [(NH3)5RuIII] coordinated to the exocyclic nitrogens of isocytosine (ICyt) and 6-methylisocytosine (6MeICyt) have been determined by 1H(More)
 DNA binding by trans-[(H2O)(Pyr)(NH3)4RuII]2+ (Pyr=py, 3-phpy, 4-phpy, 3-bnpy, 4-bnpy) is highly selective for G7 with K G=1.1×104 to 2.8×104, with the more hydrophobic Pyr ligands exhibiting slightly higher binding. A strong dependence on ionic strength indicates that ion-pairing with DNA occurs prior to binding. At μ=0.05, d[RuII-DNA]/dt=k[RuII][DNA],(More)
  • 1