Learn More
In contrast to most denitrifiers studied so far, Pseudomonas stutzeri TR2 produces low levels of nitrous oxide (N(2)O) even under aerobic conditions. We compared the denitrification activity of strain TR2 with those of various denitrifiers in an artificial medium that was derived from piggery wastewater. Strain TR2 exhibited strong denitrification activity(More)
Nitrous oxide (N(2)O) is emitted during the aerated nitrification process of wastewater treatment, but its mechanism is not understood. In this study, we employed a model system to clarify the mechanism of N(2)O emission, utilizing the activated sludge derived from a piggery effluent. Aerated incubation of the sludge with ammonium (NH(4)(+)) or(More)
Cassette-electrode microbial fuel cells (CE-MFCs) have been developed for the conversion of biomass wastes into electric energy. The present study modified CE-MFC for its application to wastewater treatment and examined its utility in a long-term (240 days) experiment to treat a synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and(More)
Ralstonia pickettii K50 (strain K50) is a denitrifying bacterium that produces low levels of N(2)O under aerobic conditions. In this study, we found that co-culturing of strain K50 with Streptomyces griseus significantly enhanced the denitrification activity of strain K50 in an artificial wastewater (AWW) system. Most factors that enhance denitrification(More)
Strain M-07(T) was isolated from nitrifying-denitrifying activated sludge treating piggery wastewater. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain M-07(T) belonged to the genus Advenella. 16S rRNA gene sequence similarity between M-07(T) and Advenella incenata CCUG 45225(T), Advenella mimigardefordensis DPN7(T) and(More)
Cassette-electrode microbial fuel cells (CE-MFCs) have been demonstrated useful to treat biomass wastes and recover electric energy from them. In order to reveal electricity-generation mechanisms in CE-MFCs, the present study operated a bench-scale reactor (1 l in capacity; approximately 1,000 cm(2) in anode and cathode areas) for treating a high-strength(More)
Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for(More)
Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an(More)
In bioaugmentation technology, survival of inoculant in the treatment system is prerequisite but remains to be a crucial hurdle. In this study, we bioaugmented the denitrification tank of a piggery wastewater treatment system with the denitrifying bacterium Pseudomonas stutzeri strain TR2 in two pilot-scale experiments, with the aim of reducing nitrous(More)
Laboratory microbial fuel cells were supplied with artificial wastewater and used to examine how supplementation with poly iron sulfate, an inorganic polymer flocculant widely used in wastewater-treatment plants, affects electricity generation and anode microbiomes. It is shown that poly iron sulfate substantially increases electric outputs from microbial(More)