Morio Miyahara

Learn More
In contrast to most denitrifiers studied so far, Pseudomonas stutzeri TR2 produces low levels of nitrous oxide (N(2)O) even under aerobic conditions. We compared the denitrification activity of strain TR2 with those of various denitrifiers in an artificial medium that was derived from piggery wastewater. Strain TR2 exhibited strong denitrification activity(More)
Understanding of how operational parameters affect the composition of exoelectrogenic microbes is an important step in the development of efficient microbial fuel cells (MFCs). In the present study, single-chamber MFCs were inoculated with rice paddy-field soil and continuously supplied with an acetate medium containing different concentrations of NaCl(More)
Nitrous oxide (N(2)O) is emitted during the aerated nitrification process of wastewater treatment, but its mechanism is not understood. In this study, we employed a model system to clarify the mechanism of N(2)O emission, utilizing the activated sludge derived from a piggery effluent. Aerated incubation of the sludge with ammonium (NH(4)(+)) or(More)
Cassette-electrode microbial fuel cells (CE-MFCs) have been developed for the conversion of biomass wastes into electric energy. The present study modified CE-MFC for its application to wastewater treatment and examined its utility in a long-term (240 days) experiment to treat a synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and(More)
Ralstonia pickettii K50 (strain K50) is a denitrifying bacterium that produces low levels of N(2)O under aerobic conditions. In this study, we found that co-culturing of strain K50 with Streptomyces griseus significantly enhanced the denitrification activity of strain K50 in an artificial wastewater (AWW) system. Most factors that enhance denitrification(More)
Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for(More)
Strain M-07(T) was isolated from nitrifying-denitrifying activated sludge treating piggery wastewater. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain M-07(T) belonged to the genus Advenella. 16S rRNA gene sequence similarity between M-07(T) and Advenella incenata CCUG 45225(T), Advenella mimigardefordensis DPN7(T) and(More)
Cassette-electrode microbial fuel cells (CE-MFCs) have been demonstrated useful to treat biomass wastes and recover electric energy from them. In order to reveal electricity-generation mechanisms in CE-MFCs, the present study operated a bench-scale reactor (1 l in capacity; approximately 1,000 cm2 in anode and cathode areas) for treating a high-strength(More)
Methylotrophs are organisms that are able to grow on C1 compounds as carbon and energy sources. They play important roles in the global carbon cycle and contribute largely to industrial wastewater treatment. To identify and characterize methylotrophs that are involved in methanol degradation in wastewater-treatment plants, methanol-fed activated-sludge(More)
In bioaugmentation technology, survival of inoculant in the treatment system is prerequisite but remains to be a crucial hurdle. In this study, we bioaugmented the denitrification tank of a piggery wastewater treatment system with the denitrifying bacterium Pseudomonas stutzeri strain TR2 in two pilot-scale experiments, with the aim of reducing nitrous(More)