Learn More
OBJECTIVE In this study, we investigated the effects of enamel matrix derivative (EMD) on osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) expression of osteoblasts in the presence of lipopolysaccharide (LPS). STUDY DESIGN OPG and RANKL gene expression and protein synthesis of MC3T3-E1 osteoblastic cells were examined(More)
Bone marrow mesenchymal stem cells (MSCs) are candidate cells for cartilage tissue engineering. This is due to their ability to undergo chondrogenic differentiation after extensive expansion in vitro and stimulation with various biomaterials in three-dimensional (3-D) systems. Collagen type II is one of the major components of the hyaline cartilage and(More)
The bone marrow harbors a population of mesenchymal stem cells (MSCs) that possess the potential to differentiate into bone, cartilage, and fat, and along other tissue pathways. To date, MSCs from various species have been studied. Despite the bovine experimental model being widely used in experiments in vivo and in vitro, only a limited amount of(More)
OBJECTIVE Pluripotent mesenchymal stem cells (MSC) have been isolated and well characterized from several tissue sources, including bone marrow stroma. MSC from different animals showed slight differences in morphology and in the potential to differentiate. In the present study, we isolated MSC from bovine bone marrow and induced chondrogenesis in order to(More)
Bone marrow contains multipotent cells that differentiate into fibroblasts, adipocytes, and osteoblasts. Recently we found that type I collagen matrix induced the osteoblastic differentiation of bone marrow cells. Three weeks after cells were cultured with type I collagen, they formed mineralized tissues. In this study, we investigated the expression of(More)
Matrix extracellular phosphoglycoprotein (MEPE)/ osteoblast/osteocyte factor 45 (OF45) is a recently isolated RGD-containing matrix protein that acts as the tumor-derived phosphaturic factor in oncogenic hypophosphatemic osteomalacia. It is also highly expressed by osteoblasts and osteocytes. We examined the regulation of MEPE/OF45 mRNA expression in(More)
In this study, we investigated the effect of type I collagen on dentin matrix protein-1 (Dmp-1) and osteocalcin (OCN) gene expression of dental pulp cells. The mRNA level of Dmp-1 gene was down-regulated; however, OCN gene expression was up-regulated by the culture of dental pulp cells with type I collagen. These findings imply that type I collagen(More)
Bovine bone marrow mesenchymal stem cells (MSCs) cultured in condensate culture, spontaneous and independent for any external biostimulants, undergo chondrogenic differentiation. In the present study, the bovine MSC chondrogenesis pathway was studied by analyzing stage-specific gene expression using quantitative "Real Time" reverse transcriptase polymerase(More)
AIM The effect of calcium ions on dental pulp cells was examined and the mechanism of dentine bridge formation by calcium hydroxide was investigated. METHODOLOGY Human dental pulp cells were treated with high concentration of calcium or magnesium ions for 24 h and fibronectin gene expression was measured by the quantitative PCR method. Human dental pulp(More)
Previously we found that the carboxyl-terminal propeptide of type I collagen (c-propeptide) is a major secretory protein of MC3T3-E1 osteoblastic cells. In this study, we found that c-propeptide suppresses collagen synthesis and alkaline phosphatase activity of MC3T3-E1 osteoblastic cells at the early-differentiated stage in a dose dependent manner. Mature(More)