Morgan R J Alexander

Learn More
Maintenance of pluripotency is crucial to the mammalian embryo's ability to generate the extra-embryonic and embryonic tissues that are needed for intrauterine survival and foetal development. The recent establishment of embryonic stem cells from human blastocysts (hESCs) provides an opportunity to identify the factors supporting pluripotency at early(More)
Human pluripotent stem cells from embryonic origins and those generated from reprogrammed somatic cells share many characteristics, including indefinite proliferation and a sustained capacity to differentiate into a wide variety of cell types. However, it remains to be demonstrated whether both cell types rely on similar mechanisms to maintain their(More)
Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust(More)
Stroke causes extensive cellular loss that leads to a disintegration of the afflicted brain tissue. Although transplanted neural stem cells can recover some of the function lost after stroke, recovery is incomplete and restoration of lost tissue is minimal. The challenge therefore is to provide transplanted cells with matrix support in order to optimise(More)
Silencing and variegated transgene expression are poorly understood problems that can interfere with gene function studies in human embryonic stem cells (hESCs). We show that transgene expression (enhanced green fluorescent protein [EGFP]) from random integration sites in hESCs is affected by variegation and silencing, with only half of hESCs expressing the(More)
Nodal, a member of the TGF-beta family of signaling molecules, has been implicated in pluripotency in human embryonic stem cells (hESCs) [Vallier, L., Reynolds, D., Pedersen, R.A., 2004a. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403-421], a finding that seems paradoxical given(More)
Human embryonic stem cells (hESCs) are a potential source of hematopoietic cells for therapeutic transplantation and can provide a model for human hematopoiesis. Culture of hESCs on murine stromal layers or in stromal-free conditions as embryoid bodies results in low levels of hematopoietic cells. Here we demonstrate that overexpression of the transcription(More)
The high throughput discovery of new bio materials can be achieved by rapidly screening many different materials synthesised by a combinatorial approach to identify the optimal composition that fulfils a particular biomedical application. Here we review the literature in this area and conclude that for polymers this process is best achieved in a microarray(More)
The development of an anterior-posterior (AP) polarity is a crucial process that in the mouse has been very difficult to analyse, because it takes place as the embryo implants within the mother. To overcome this obstacle, we have established an in-vitro culture system that allows us to follow the step-wise development of anterior visceral endoderm (AVE),(More)
Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic(More)