Morag J Maclean

Learn More
The glyoxalase I gene (gloA) of Escherichia coli has been cloned and used to create a null mutant. Cells overexpressing glyoxalase I exhibit enhanced tolerance of methylglyoxal (MG) and exhibit elevated rates of detoxification, although the increase is not stoichiometric with the change in enzyme activity. Potassium efflux via KefB is also enhanced in the(More)
Only recently have the studies of yeast ageing started to focus on the S288c-derived strains used extensively in genomics and on the longest lifespans. Chronological longevity (stationary (G(0)) survival) of such strains is greater when cells are pre-grown on a respiratory carbon source, as compared to when they are pre-grown on glucose (the latter a(More)
Prohibitin proteins have been implicated in cell proliferation, aging, respiratory chain assembly and the maintenance of mitochondrial integrity. The prohibitins of Saccharomyces cerevisiae, Phb1 and Phb2, have strong sequence similarity with their human counterparts prohibitin and BAP37, making yeast a good model organism in which to study prohibitin(More)
Studies in Drosophila and Caenorhabditis elegans have shown increased longevity with the increased free radical scavenging that accompanies overexpression of oxidant-scavenging enzymes. This study used yeast, another model for aging research, to probe the effects of overexpressing the major activity protecting against superoxide generated by the(More)
The role of the KefB and KefC potassium efflux systems in protecting Escherichia coli cells against the toxic effects of the electrophile N-ethylmaleimide has been investigated. Activation of KefB and KefC aids the survival of cells exposed to high concentrations (> 100 microM) of NEM. High potassium concentrations reduce the protection afforded by(More)
The chronological life span of yeast, the survival of stationary (G0) cells over time, provides a model for investigating certain of the factors that may influence the aging of non-dividing cells and tissues in higher organisms. This study measured the effects of defined defects in the base excision repair (BER) system for DNA repair on this life span.(More)
Survival of exposure to methylglyoxal (MG) in Gram-negative pathogens is largely dependent upon the operation of the glutathione-dependent glyoxalase system, consisting of two enzymes, GlxI (gloA) and GlxII (gloB). In addition, the activation of the KefGB potassium efflux system is maintained closed by glutathione (GSH) and is activated by S-lactoylGSH(More)
  • 1