Learn More
Cytoplasmic dynein is a microtubule-based mechanochemical protein that plays an essential role in cell division, vesicle transport, and cytoplasmic membrane organization. As a molecular motor, dynein utilizes an ATP hydrolysis mechanism to bind and release microtubules and to undergo conformational changes that result in a net displacement towards the(More)
Dyneins form one of the three major families of cytoskeleton-based motor proteins that together drive most of the visible forms of cell and organelle movement. We present here a 3D reconstruction of a cytoplasmic dynein motor domain obtained by electron microscopy, at 25 Angstrom resolution. This work demonstrates a basic motor architecture of a flat,(More)
Ryanodine receptor type 1 (RyR1) releases Ca(2+) from intracellular stores upon nerve impulse to trigger skeletal muscle contraction. Effector binding at the cytoplasmic domain tightly controls gating of the pore domain of RyR1 to release Ca(2+). However, the molecular mechanism that links effector binding to channel gating is unknown due to lack of(More)
Calmodulin (CaM) binds to the ryanodine receptor/calcium release channel of skeletal muscle (RyR1), both in the absence and presence of Ca(2+), and regulates the activity of the channel activity by activating and inhibiting it, respectively. Using cryo-electron microscopy and three-dimensional reconstruction, we found that one apoCaM binds per RyR1 subunit(More)
RyR1 is an intracellular calcium channel with a central role in muscle contraction. We obtained a three-dimensional reconstruction of the RyR1 in the closed state at a nominal resolution of approximately 10 A using cryo-EM. The cytoplasmic assembly consists of a series of interconnected tubular structures that merge into four columns that extend into the(More)
The 12 kDa FK506-binding protein (FKBP12) constitutively binds to the calcium release channel RyR1. Removal of FKBP12 using FK506 or rapamycin causes an increased open probability and an increase in the frequency of sub-conductance states in RyR1. Using cryo-electron microscopy and single-particle image processing, we have determined the 3D difference map(More)
After nearly four decades of investigation, the dynein motor is finally on the verge of revealing its inner secrets. This multisubunit ATPase participates in several important microtubule-based motilities in eukaryotic cells. Numerous recent articles have advanced the understanding of the dynein motor substructure and its mechanism of force production,(More)
Ryanodine receptor type 1 (RyR1) produces spatially and temporally defined Ca2+ signals in several cell types. How signals received in the cytoplasmic domain are transmitted to the ion gate and how the channel gates are unknown. We used EGTA or neuroactive PCB 95 to stabilize the full closed or open states of RyR1. Single-channel measurements in the(More)
We have used an antibody-Fab tag to mark the position of the cytoplasmic dynein amino-terminal tail domain, as it emerges from the main mass of the motor. Electron microscopy and single-particle image analysis reveal that the tag does not assume a rigidly fixed position, but instead can be found at various locations around the planar ring that comprises the(More)
The 12-kDa FK506-binding proteins (FKBP12 and FKBP12.6) are regulatory subunits of ryanodine receptor (RyR) Ca(2+) release channels. To investigate the structural basis of FKBP interactions with the RyR1 and RyR2 isoforms, we used site-directed fluorescent labeling of FKBP12.6, ligand binding measurements, and fluorescence resonance energy transfer (FRET).(More)