Monise Casanova

Learn More
The members of the large keratin family of cytoskeletal proteins are expressed in a carefully regulated tissue- and differentiation-specific manner. Although these proteins are thought to be involved in imparting mechanical integrity to epithelial cells, the functional significance of their complex differential expression is still unclear. Here we provide(More)
Proteins of the retinoblastoma family (pRb, p107, and p130) modulate cell proliferation, a function related to their capacity to control the activity of the E2F transcription factor family. The Rb proteins also control cell differentiation in different tissues. We have recently described their involvement in human epidermal keratinocyte differentiation(More)
To study the dynamics of keratin intermediate filaments, we fused two different types of epithelial cells (PtK2 and BMGE+H) and studied how the keratins from the parental cells recombine and copolymerize to form the heterokaryon cytoskeleton. The behaviour of the keratins during this process was followed by immunofluorescence using specific antibodies.(More)
Keratins K8 and K18 are the major components of the intermediate-filament cytoskeleton of simple epithelia. Increased levels of these keratins have been correlated with various tumor cell characteristics, including progression to malignancy, invasive behavior, and drug sensitivity, although a role for K8/K18 in tumorigenesis has not yet been demonstrated.(More)
CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal(More)
The cytokeratin intermediate filaments have a relevant role in the proliferation and differentiation processes of epithelial cells. To provide information about the role of K8 cytokeratin during the auditory receptor differentiation, two groups of adult mice were used: TGK8-4 transgenic and control animals. The TGK8-4 transgenic mice contained 12 kb of K8(More)
Thyroid hormone receptors (TRs) are members of the nuclear receptors (NRs) superfamily, being encoded by two genes: TRa and TRbeta. In this paper, the ligand-binding domain (LBD) of the TRbeta1 isoform was immobilized on the surface of nanostructured electrodes for TR detection. The platforms containing TRbeta1-LBD were applied to the detection of specific(More)
  • 1