Monique Philippe

Learn More
Physiological adaptation of normal blood vessels to acute or chronic changes in blood flow is endothelium dependent. In vitro studies have shown that, among other genes, NO synthase (NOS) 3 mRNA and protein expression is enhanced by acute elevation of shear stress in endothelial cells. We have investigated the effect of chronic high blood flow on NOS3 mRNA(More)
BACKGROUND & AIMS In portal hypertension, the mechanisms responsible for nitric oxide (NO) overproduction and vasodilation have not yet been clearly identified. One hypothesis is that NO synthase (NOS) 3 is overactivated because of shear stress in endothelial cells caused by hyperkinetic circulation. The aim of this study was to evaluate aortic NOS3 after a(More)
The pathological remodeling of the arterial wall in atherosclerosis involves protease activities, which play a major role in complications via plaque rupture. Circulating leukocytes and particularly neutrophils have been shown to be an independent predictor of recurrent ischemic events. However, neutrophils are poorly documented within atherosclerotic(More)
The consequences of hypertension and aging on cardiovascular structure and function are reputed to be similar, suggesting that blood pressure plays a role in the aging process. However, the exact relationship between aging, blood pressure, and the arterial structure-function relationship has not been demonstrated. To test the effects of aging,(More)
The influence of age on endothelial functional markers was investigated in rats. Angiotensin I converting enzyme (ACE) activity and nitric oxide synthase (NOS) mRNA expressions were examined in the lung and aorta of 10-, 20-, and 30-mo-old normotensive rats. These data were extended by the measurement of circulating endothelial cells. ACE activity was(More)
Common features such as elastic fibre destruction, mucoid accumulation, and smooth muscle cell apoptosis are co-localized in aneurysms of the ascending aorta of various aetiologies. Recent experimental studies reported an activation of TGF-beta in aneurysms related to Marfan (and Loeys-Dietz) syndrome. Here we investigate TGF-beta signalling in normal and(More)
Smooth muscle cell (SMC) rarefaction is involved in the development of several vascular pathologies. We suggest that the plasminogen activation system is a potential extracellular signal that can induce pericellular proteolysis and apoptosis of vascular SMCs. Using primary cultures of arterial SMCs, we show that plasmin generated from plasminogen on the(More)
To explain how converting enzyme inhibition could improve the prognosis in cardiac insufficiency, the effect of converting enzyme inhibition (CEI) by S9490-3 (Perindopril) treatment for 2 months (treated infarctions, n = 18) on hormonal plasma variables and the quantitative and qualitative changes in myocardium were studied in an experimental model of left(More)
Myocardial fibrosis resulting from arterial hypertension alters myocardial structure and function. Myocardial fibrosis is characterized by a pathological accumulation of types I and III collagens. We used an aldosterone antagonist (spironolactone) and an angiotensin II antagonist (losartan) to elucidate the respective role of these hormones and hypertension(More)
The anti-inflammatory cytokine IL-10 inhibits intimal hyperplasia after stent implantation via a powerful inactivation of monocytes. We tested the hypothesis that IL-10 may also inhibit vascular smooth muscle cell (SMC) activation via the inhibition of the NF-kappaB/I-kappaB system. The IL-10 receptor was detected in rat SMCs in vitro and in vivo. In(More)